6 research outputs found

    The information paradox and the locality bound

    Full text link
    Hawking's argument for information loss in black hole evaporation rests on the assumption of independent Hilbert spaces for the interior and exterior of a black hole. We argue that such independence cannot be established without incorporating strong gravitational effects that undermine locality and invalidate the use of quantum field theory in a semiclassical background geometry. These considerations should also play a role in a deeper understanding of horizon complementarity.Comment: 21 pages, harvmac; v2-3. minor corrections, references adde

    Sinks in the Landscape, Boltzmann Brains, and the Cosmological Constant Problem

    Full text link
    This paper extends the recent investigation of the string theory landscape in hep-th/0605266, where it was found that the decay rate of dS vacua to a collapsing space with a negative vacuum energy can be quite large. The parts of space that experience a decay to a collapsing space, or to a Minkowski vacuum, never return back to dS space. The channels of irreversible vacuum decay serve as sinks for the probability flow. The existence of such sinks is a distinguishing feature of the string theory landscape. We describe relations between several different probability measures for eternal inflation taking into account the existence of the sinks. The local (comoving) description of the inflationary multiverse suffers from the so-called Boltzmann brain (BB) problem unless the probability of the decay to the sinks is sufficiently large. We show that some versions of the global (volume-weighted) description do not have this problem even if one ignores the existence of the sinks. We argue that if the number of different vacua in the landscape is large enough, the anthropic solution of the cosmological constant problem in the string landscape scenario should be valid for a broad class of the probability measures which solve the BB problem. If this is correct, the solution of the cosmological constant problem may be essentially measure-independent. Finally, we describe a simplified approach to the calculations of anthropic probabilities in the landscape, which is less ambitious but also less ambiguous than other methods.Comment: 42 pages, 5 figures, the paper is substantially extended, a section on the cosmological constant is addeed; the version published in JCA

    Cosmological Measures without Volume Weighting

    Full text link
    Many cosmologists (myself included) have advocated volume weighting for the cosmological measure problem, weighting spatial hypersurfaces by their volume. However, this often leads to the Boltzmann brain problem, that almost all observations would be by momentary Boltzmann brains that arise very briefly as quantum fluctuations in the late universe when it has expanded to a huge size, so that our observations (too ordered for Boltzmann brains) would be highly atypical and unlikely. Here it is suggested that volume weighting may be a mistake. Volume averaging is advocated as an alternative. One consequence may be a loss of the argument that eternal inflation gives a nonzero probability that our universe now has infinite volume.Comment: 15 pages, LaTeX, added references for constant-H hypersurfaces and also an idea for minimal-flux hypersurface
    corecore