12,278 research outputs found
Light Stop Searches at the LHC in Events with One Hard Photon or Jet and Missing Energy
Low energy supersymmetric models provide a solution to the hierarchy problem
and also have the necessary ingredients to solve two of the most outstanding
issues in cosmology: the origin of the baryon asymmetry and the source of dark
matter. In the MSSM, weak scale generation of the baryon asymmetry may be
achieved in the presence of light stops, with masses lower than about 130 GeV.
Moreover, the proper dark matter density may be obtained in the stop-neutralino
co-annihilation region, where the stop-neutralino mass difference is smaller
than a few tens of GeV. Searches for scalar top quarks (stops) in pair
production processes at the Tevatron and at the Large Hadron Collider (LHC)
become very challenging in this region of parameters. At the LHC, however,
light stops proceeding from the decay of gluino pairs may be identified,
provided the gluino mass is smaller than about 900 GeV. In this article we
propose an alternative method for stop searches in the co-annihilation region,
based on the search for these particles in events with missing energy plus one
hard photon or jet. We show that this method is quite efficient and, when
complemented with ongoing Tevatron searches, allows to probe stop masses up to
about 160 GeV, fully probing the region of parameters consistent with
electroweak baryogenesis in the MSSM.Comment: 17 pages, 6 figure
Scalar Top Quark Studies with Various Visible Energies
The precision determination of scalar top quark properties will play an
important role at a future International Linear Collider (ILC). Recent and
ongoing studies are discussed for different experimental topologies in the
detector. First results are presented for small mass differences between the
scalar top and neutralino masses. This corresponds to a small expected visible
energy in the detector. An ILC will be a unique accelerator to explore this
scenario. In addition to finding the existence of light stop quarks, the
precise measurement of their properties is crucial for testing their impact on
the dark matter relic abundance and the mechanism of electroweak baryogenesis.
Significant sensitivity for mass differences down to 5 GeV are obtained. The
simulation is based on a fast and realistic detector simulation. A vertex
detector concept of the Linear Collider Flavor Identification
(LCFI)collaboration, which studies pixel detectors for heavy quark flavour
identification, is implemented in the simulations for c-quark tagging. The
study extends simulations for large mass differences (large visible energy) for
which aspects of different detector simulations, the vertex detector design,
and different methods for the determination of the scalar top mass are
discussed. Based on the detailed simulations we study the uncertainties for the
dark matter density predictions and their estimated uncertainties from various
sources. In the region of parameters where stop-neutralino co-annihilation
leads to a value of the relic density consistent with experimental results, as
precisely determined by the Wilkinson Microwave Anisotropy Probe (WMAP), the
stop-neutralino mass difference is small and the ILC will be able to explore
this region efficiently.Comment: 11 pages, 11 figures, presented at SUSY'0
Precision Measurements of Higgs Couplings: Implications for New Physics Scales
The measured properties of the recently discovered Higgs boson are in good
agreement with predictions from the Standard Model. However, small deviations
in the Higgs couplings may manifest themselves once the currently large
uncertainties will be improved as part of the LHC program and at a future Higgs
factory. We review typical new physics scenarios that lead to observable
modifications of the Higgs interactions. They can be divided into two broad
categories: mixing effects as in portal models or extended Higgs sectors, and
vertex loop effects from new matter or gauge fields. In each model we relate
coupling deviations to their effective new physics scale. It turns out that
with percent level precision the Higgs couplings will be sensitive to the
multi-TeV regime.Comment: Invited review for Journal of Physics G, 33pp; v2: references added
and improved discussion of operator basis in section 2.
3-loop Massive Contributions to the DIS Operator Matrix Element
Contributions to heavy flavour transition matrix elements in the variable
flavour number scheme are considered at 3-loop order. In particular a
calculation of the diagrams with two equal masses that contribute to the
massive operator matrix element is performed. In the Mellin
space result one finds finite nested binomial sums. In -space these sums
correspond to iterated integrals over an alphabet containing also square-root
valued letters.Comment: 4 pages, Contribution to the Proceedings of QCD '14, Montpellier,
July 201
- …