3,293 research outputs found

    Stellar collisions in accreting protoclusters: a Monte Carlo dynamical study

    Full text link
    We explore the behaviour of accreting protoclusters with a Monte Carlo dynamical code in order to evaluate the relative roles of accretion, two body relaxation and stellar collisions in the cluster evolution. We corroborate the suggestion of Clarke & Bonnell that the number of stellar collisions should scale as N5/3M˙2/3N^{5/3} \dot M^{2/3} (independent of other cluster parameters, where N is the number of stars in the cluster and M˙\dot M the rate of mass accretion) and thus strengthen the argument that stellar collisions are more likely in populous (large N) clusters. We however find that the estimates of Clarke & Bonnell were pessimistic in the sense that we find that more than 99 % of the stellar collisions occur within the post-adiabatic regime as the cluster evolves towards core collapse, driven by a combination of accretion and two-body relaxation. We discuss how the inclusion of binaries may reduce the number of collisions through the reversal of core collapse but also note that it opens up another collisional channel involving the merger of stars within hard binaries; future Nbody simulations are however required in order to explore this issue.Comment: 9 pages, 9 figures; accepted for publication in MNRAS. This version contains minor revisions after referee's comments

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Binary Encounters With Supermassive Black Holes: Zero-Eccentricity LISA Events

    Full text link
    Current simulations of the rate at which stellar-mass compact objects merge with supermassive black holes (called extreme mass ratio inspirals, or EMRIs) focus on two-body capture by emission of gravitational radiation. The gravitational wave signal of such events will likely involve a significant eccentricity in the sensitivity range of the Laser Interferometer Space Antenna (LISA). We show that tidal separation of stellar-mass compact object binaries by supermassive black holes will instead produce events whose eccentricity is nearly zero in the LISA band. Compared to two-body capture events, tidal separations have a high cross section and result in orbits that have a large pericenter and small apocenter. Therefore, the rate of interactions per binary is high and the resulting systems are very unlikely to be perturbed by other stars into nearly radial plunges. Depending on the fraction of compact objects that are in binaries within a few parsecs of the center, the rate of low-eccentricity LISA events could be comparable to or larger than the rate of high-eccentricity events.Comment: Final accepted version: ApJ Letters 2005, 631, L11

    Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO

    Get PDF
    Gravitational waves (GWs) from the inspiral of a neutron star (NS) or stellar-mass black hole (BH) into an intermediate-mass black hole (IMBH) with mass between ~50 and ~350 solar masses may be detectable by the planned advanced generation of ground-based GW interferometers. Such intermediate mass ratio inspirals (IMRIs) are most likely to be found in globular clusters. We analyze four possible IMRI formation mechanisms: (1) hardening of an NS-IMBH or BH-IMBH binary via three-body interactions, (2) hardening via Kozai resonance in a hierarchical triple system, (3) direct capture, and (4) inspiral of a compact object from a tidally captured main-sequence star; we also discuss tidal effects when the inspiraling object is an NS. For each mechanism we predict the typical eccentricities of the resulting IMRIs. We find that IMRIs will have largely circularized by the time they enter the sensitivity band of ground-based detectors. Hardening of a binary via three-body interactions, which is likely to be the dominant mechanism for IMRI formation, yields eccentricities under 10^-4 when the GW frequency reaches 10 Hz. Even among IMRIs formed via direct captures, which can have the highest eccentricities, around 90% will circularize to eccentricities under 0.1 before the GW frequency reaches 10 Hz. We estimate the rate of IMRI coalescences in globular clusters and the sensitivity of a network of three Advanced LIGO detectors to the resulting GWs. We show that this detector network may see up to tens of IMRIs per year, although rates of one to a few per year may be more plausible. We also estimate the loss in signal-to-noise ratio that will result from using circular IMRI templates for data analysis and find that, for the eccentricities we expect, this loss is negligible.Comment: Accepted for publication in ApJ; revised version reflects changes made to the article during the acceptance proces

    Durability of a Changing Western Redcedar Resource1

    Get PDF
    The heartwood of western redcedar (Thuja plicata) is known for its natural resistance to fungal attack, but some users of western redcedar utility poles have suggested that its durability may be diminished as suppliers begin to harvest trees from younger stands. The decay resistance of western redcedar samples from the Pacific Northwest and Idaho was tested by using Postia placenta in a soil block test. Weight losses varied widely among and between sites and were not correlated with position in the heartwood cross section, tree age, or silvicultural factors. With results similar to those from a 1957 study, we can infer that the durability of the currently used younger material has not changed from that of earlier, older stocks

    On Convergence of the Inexact Rayleigh Quotient Iteration with the Lanczos Method Used for Solving Linear Systems

    Full text link
    For the Hermitian inexact Rayleigh quotient iteration (RQI), the author has established new local general convergence results, independent of iterative solvers for inner linear systems. The theory shows that the method locally converges quadratically under a new condition, called the uniform positiveness condition. In this paper we first consider the local convergence of the inexact RQI with the unpreconditioned Lanczos method for the linear systems. Some attractive properties are derived for the residuals, whose norms are ξk+1\xi_{k+1}'s, of the linear systems obtained by the Lanczos method. Based on them and the new general convergence results, we make a refined analysis and establish new local convergence results. It is proved that the inexact RQI with Lanczos converges quadratically provided that ξk+1ξ\xi_{k+1}\leq\xi with a constant ξ1\xi\geq 1. The method is guaranteed to converge linearly provided that ξk+1\xi_{k+1} is bounded by a small multiple of the reciprocal of the residual norm rk\|r_k\| of the current approximate eigenpair. The results are fundamentally different from the existing convergence results that always require ξk+1<1\xi_{k+1}<1, and they have a strong impact on effective implementations of the method. We extend the new theory to the inexact RQI with a tuned preconditioned Lanczos for the linear systems. Based on the new theory, we can design practical criteria to control ξk+1\xi_{k+1} to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with arXiv:0906.223

    Non-volatile molecular memory elements based on ambipolar nanotube field effect transistors

    Full text link
    We have fabricated air-stable n-type, ambipolar carbon nanotube field effect transistors (CNFETs), and used them in nanoscale memory cells. N-type transistors are achieved by annealing of nanotubes in hydrogen gas and contacting them by cobalt electrodes. Scanning gate microscopy reveals that the bulk response of these devices is similar to gold-contacted p-CNFETs, confirming that Schottky barrier formation at the contact interface determines accessibility of electron and hole transport regimes. The transfer characteristics and Coulomb Blockade (CB) spectroscopy in ambipolar devices show strongly enhanced gate coupling, most likely due to reduction of defect density at the silicon/silicon-dioxide interface during hydrogen anneal. The CB data in the ``on''-state indicates that these CNFETs are nearly ballistic conductors at high electrostatic doping. Due to their nanoscale capacitance, CNFETs are extremely sensitive to presence of individual charge around the channel. We demonstrate that this property can be harnessed to construct data storage elements that operate at the few-electron level.Comment: 6 pages text, 3 figures and 1 table of content graphic; available as NanoLetters ASAP article on the we

    Extreme mass ratio inspiral rates: dependence on the massive black hole mass

    Full text link
    We study the rate at which stars spiral into a massive black hole (MBH) due to the emission of gravitational waves (GWs), as a function of the mass M of the MBH. In the context of our model, it is shown analytically that the rate approximately depends on the MBH mass as M^{-1/4}. Numerical simulations confirm this result, and show that for all MBH masses, the event rate is highest for stellar black holes, followed by white dwarfs, and lowest for neutron stars. The Laser Interferometer Space Antenna (LISA) is expected to see hundreds of these extreme mass ratio inspirals per year. Since the event rate derived here formally diverges as M->0, the model presented here cannot hold for MBHs of masses that are too low, and we discuss what the limitations of the model are.Comment: Accepted to CQG, special LISA issu
    corecore