Gravitational waves (GWs) from the inspiral of a neutron star (NS) or
stellar-mass black hole (BH) into an intermediate-mass black hole (IMBH) with
mass between ~50 and ~350 solar masses may be detectable by the planned
advanced generation of ground-based GW interferometers. Such intermediate mass
ratio inspirals (IMRIs) are most likely to be found in globular clusters. We
analyze four possible IMRI formation mechanisms: (1) hardening of an NS-IMBH or
BH-IMBH binary via three-body interactions, (2) hardening via Kozai resonance
in a hierarchical triple system, (3) direct capture, and (4) inspiral of a
compact object from a tidally captured main-sequence star; we also discuss
tidal effects when the inspiraling object is an NS. For each mechanism we
predict the typical eccentricities of the resulting IMRIs. We find that IMRIs
will have largely circularized by the time they enter the sensitivity band of
ground-based detectors. Hardening of a binary via three-body interactions,
which is likely to be the dominant mechanism for IMRI formation, yields
eccentricities under 10^-4 when the GW frequency reaches 10 Hz. Even among
IMRIs formed via direct captures, which can have the highest eccentricities,
around 90% will circularize to eccentricities under 0.1 before the GW frequency
reaches 10 Hz. We estimate the rate of IMRI coalescences in globular clusters
and the sensitivity of a network of three Advanced LIGO detectors to the
resulting GWs. We show that this detector network may see up to tens of IMRIs
per year, although rates of one to a few per year may be more plausible. We
also estimate the loss in signal-to-noise ratio that will result from using
circular IMRI templates for data analysis and find that, for the eccentricities
we expect, this loss is negligible.Comment: Accepted for publication in ApJ; revised version reflects changes
made to the article during the acceptance proces