40 research outputs found

    DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos

    Predicting at-risk opioid use three months after ed visit for trauma: Results from the AURORA study

    Get PDF
    OBJECTIVE: Whether short-term, low-potency opioid prescriptions for acute pain lead to future at-risk opioid use remains controversial and inadequately characterized. Our objective was to measure the association between emergency department (ED) opioid analgesic exposure after a physical, trauma-related event and subsequent opioid use. We hypothesized ED opioid analgesic exposure is associated with subsequent at-risk opioid use. METHODS: Participants were enrolled in AURORA, a prospective cohort study of adult patients in 29 U.S., urban EDs receiving care for a traumatic event. Exclusion criteria were hospital admission, persons reporting any non-medical opioid use (e.g., opioids without prescription or taking more than prescribed for euphoria) in the 30 days before enrollment, and missing or incomplete data regarding opioid exposure or pain. We used multivariable logistic regression to assess the relationship between ED opioid exposure and at-risk opioid use, defined as any self-reported non-medical opioid use after initial ED encounter or prescription opioid use at 3-months. RESULTS: Of 1441 subjects completing 3-month follow-up, 872 participants were included for analysis. At-risk opioid use occurred within 3 months in 33/620 (5.3%, CI: 3.7,7.4) participants without ED opioid analgesic exposure; 4/16 (25.0%, CI: 8.3, 52.6) with ED opioid prescription only; 17/146 (11.6%, CI: 7.1, 18.3) with ED opioid administration only; 12/90 (13.3%, CI: 7.4, 22.5) with both. Controlling for clinical factors, adjusted odds ratios (aORs) for at-risk opioid use after ED opioid exposure were: ED prescription only: 4.9 (95% CI 1.4, 17.4); ED administration for analgesia only: 2.0 (CI 1.0, 3.8); both: 2.8 (CI 1.2, 6.5). CONCLUSIONS: ED opioids were associated with subsequent at-risk opioid use within three months in a geographically diverse cohort of adult trauma patients. This supports need for prospective studies focused on the long-term consequences of ED opioid analgesic exposure to estimate individual risk and guide therapeutic decision-making

    Predicting At-Risk Opioid Use Three Months After Ed Visit for Trauma: Results from the AURORA Study

    Get PDF
    OBJECTIVE: Whether short-term, low-potency opioid prescriptions for acute pain lead to future at-risk opioid use remains controversial and inadequately characterized. Our objective was to measure the association between emergency department (ED) opioid analgesic exposure after a physical, trauma-related event and subsequent opioid use. We hypothesized ED opioid analgesic exposure is associated with subsequent at-risk opioid use. METHODS: Participants were enrolled in AURORA, a prospective cohort study of adult patients in 29 U.S., urban EDs receiving care for a traumatic event. Exclusion criteria were hospital admission, persons reporting any non-medical opioid use (e.g., opioids without prescription or taking more than prescribed for euphoria) in the 30 days before enrollment, and missing or incomplete data regarding opioid exposure or pain. We used multivariable logistic regression to assess the relationship between ED opioid exposure and at-risk opioid use, defined as any self-reported non-medical opioid use after initial ED encounter or prescription opioid use at 3-months. RESULTS: Of 1441 subjects completing 3-month follow-up, 872 participants were included for analysis. At-risk opioid use occurred within 3 months in 33/620 (5.3%, CI: 3.7,7.4) participants without ED opioid analgesic exposure; 4/16 (25.0%, CI: 8.3, 52.6) with ED opioid prescription only; 17/146 (11.6%, CI: 7.1, 18.3) with ED opioid administration only; 12/90 (13.3%, CI: 7.4, 22.5) with both. Controlling for clinical factors, adjusted odds ratios (aORs) for at-risk opioid use after ED opioid exposure were: ED prescription only: 4.9 (95% CI 1.4, 17.4); ED administration for analgesia only: 2.0 (CI 1.0, 3.8); both: 2.8 (CI 1.2, 6.5). CONCLUSIONS: ED opioids were associated with subsequent at-risk opioid use within three months in a geographically diverse cohort of adult trauma patients. This supports need for prospective studies focused on the long-term consequences of ED opioid analgesic exposure to estimate individual risk and guide therapeutic decision-making

    Direct observation of α-oxo ketenes formed from 1,3-dioxin-4-ones and the enols of β-keto esters

    No full text
    The enol forms of β-keto esters thermolyze to alcohols and α-oxo ketenes, which are characterized by low-temperature IR spectroscopy and on warming regenerate the β-hydroxy-α,β-unsaturated esters. The matrix isolated s-Z and s-E forms of α-oxo ketenes are characterized and photochemically converted into other conformers or sites. Matrix photolysis of 2,2,6-trimethyl-1,3-dioxin-4-one gives the s-Z acetylketene initially. α-Oxo ketenes polymerize in the cold and dimerize only at elevated temperatures

    Difficult diagnosis of malignant hyperthermia during laparoscopic surgery

    No full text
    corecore