359 research outputs found

    Hidden Quantum Gravity in 3d Feynman diagrams

    Full text link
    In this work we show that 3d Feynman amplitudes of standard QFT in flat and homogeneous space can be naturally expressed as expectation values of a specific topological spin foam model. The main interest of the paper is to set up a framework which gives a background independent perspective on usual field theories and can also be applied in higher dimensions. We also show that this Feynman graph spin foam model, which encodes the geometry of flat space-time, can be purely expressed in terms of algebraic data associated with the Poincare group. This spin foam model turns out to be the spin foam quantization of a BF theory based on the Poincare group, and as such is related to a quantization of 3d gravity in the limit where the Newton constant G_N goes to 0. We investigate the 4d case in a companion paper where the strategy proposed here leads to similar results.Comment: 35 pages, 4 figures, some comments adde

    Canonical analysis of the BCEA topological matter model coupled to gravitation in (2+1) dimensions

    Full text link
    We consider a topological field theory derived from the Chern - Simons action in (2+1) dimensions with the I(ISO(2,1)) group,and we investigate in detail the canonical structure of this theory.Originally developed as a topological theory of Einstein gravity minimally coupled to topological matter fields in (2+1) dimensions, it admits a BTZ black-hole solutions, and can be generalized to arbitrary dimensions.In this paper, we further study the canonical structure of the theory in (2+1) dimensions, by identifying all the distinct gauge equivalence classes of solutions as they result from holonomy considerations. The equivalence classes are discussed in detail, and examples of solutions representative of each class are constructed or identified.Comment: 17 pages, no figure

    Hidden Quantum Gravity in 4d Feynman diagrams: Emergence of spin foams

    Get PDF
    We show how Feynman amplitudes of standard QFT on flat and homogeneous space can naturally be recast as the evaluation of observables for a specific spin foam model, which provides dynamics for the background geometry. We identify the symmetries of this Feynman graph spin foam model and give the gauge-fixing prescriptions. We also show that the gauge-fixed partition function is invariant under Pachner moves of the triangulation, and thus defines an invariant of four-dimensional manifolds. Finally, we investigate the algebraic structure of the model, and discuss its relation with a quantization of 4d gravity in the limit where the Newton constant goes to zero.Comment: 28 pages (RevTeX4), 7 figures, references adde

    Ponzano-Regge model revisited III: Feynman diagrams and Effective field theory

    Full text link
    We study the no gravity limit G_{N}-> 0 of the Ponzano-Regge amplitudes with massive particles and show that we recover in this limit Feynman graph amplitudes (with Hadamard propagator) expressed as an abelian spin foam model. We show how the G_{N} expansion of the Ponzano-Regge amplitudes can be resummed. This leads to the conclusion that the dynamics of quantum particles coupled to quantum 3d gravity can be expressed in terms of an effective new non commutative field theory which respects the principles of doubly special relativity. We discuss the construction of Lorentzian spin foam models including Feynman propagatorsComment: 46 pages, the wrong file was first submitte

    Coupling of spacetime atoms and spin foam renormalisation from group field theory

    Full text link
    We study the issue of coupling among 4-simplices in the context of spin foam models obtained from a group field theory formalism. We construct a generalisation of the Barrett-Crane model in which an additional coupling between the normals to tetrahedra, as defined in different 4-simplices that share them, is present. This is realised through an extension of the usual field over the group manifold to a five argument one. We define a specific model in which this coupling is parametrised by an additional real parameter that allows to tune the degree of locality of the resulting model, interpolating between the usual Barrett-Crane model and a flat BF-type one. Moreover, we define a further extension of the group field theory formalism in which the coupling parameter enters as a new variable of the field, and the action presents derivative terms that lead to modified classical equations of motion. Finally, we discuss the issue of renormalisation of spin foam models, and how the new coupled model can be of help regarding this.Comment: RevTeX, 18 pages, no figure

    Quantum gravity as a group field theory: a sketch

    Full text link
    We give a very brief introduction to the group field theory approach to quantum gravity, a generalisation of matrix models for 2-dimensional quantum gravity to higher dimension, that has emerged recently from research in spin foam models.Comment: jpconf; 8 pages, 9 figures; to appear in the Proceedings of the Fourth Meeting on Constrained Dynamics and Quantum Gravity, Cala Gonone, Italy, September 12-16, 200

    Group field theory formulation of 3d quantum gravity coupled to matter fields

    Full text link
    We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure
    • …
    corecore