53 research outputs found

    Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles

    Full text link
    We show how to properly gauge fix all the symmetries of the Ponzano-Regge model for 3D quantum gravity. This amounts to do explicit finite computations for transition amplitudes. We give the construction of the transition amplitudes in the presence of interacting quantum spinning particles. We introduce a notion of operators whose expectation value gives rise to either gauge fixing, introduction of time, or insertion of particles, according to the choice. We give the link between the spin foam quantization and the hamiltonian quantization. We finally show the link between Ponzano-Regge model and the quantization of Chern-Simons theory based on the double quantum group of SU(2)Comment: 48 pages, 15 figure

    Scalar-Tensor theories from Λ(ϕ)\Lambda(\phi) Plebanski gravity

    Full text link
    We study a modification of the Plebanski action, which generically corresponds to a bi-metric theory of gravity, and identify a subclass which is equivalent to the Bergmann-Wagoner-Nordtvedt class of scalar-tensor theories. In this manner, scalar-tensor theories are displayed as constrained BF theories. We find that in this subclass, there is no need to impose reality of the Urbantke metrics, as also the theory with real bivectors is a scalar-tensor theory with a real Lorentzian metric. Furthermore, while under the former reality conditions instabilities can arise from a wrong sign of the scalar mode kinetic term, we show that such problems do not appear if the bivectors are required to be real. Finally, we discuss how matter can be coupled to these theories. The phenomenology of scalar field dark matter arises naturally within this framework.Comment: 21 page

    Colored Group Field Theory

    Full text link
    Group field theories are higher dimensional generalizations of matrix models. Their Feynman graphs are fat and in addition to vertices, edges and faces, they also contain higher dimensional cells, called bubbles. In this paper, we propose a new, fermionic Group Field Theory, posessing a color symmetry, and take the first steps in a systematic study of the topological properties of its graphs. Unlike its bosonic counterpart, the bubbles of the Feynman graphs of this theory are well defined and readily identified. We prove that this graphs are combinatorial cellular complexes. We define and study the cellular homology of this graphs. Furthermore we define a homotopy transformation appropriate to this graphs. Finally, the amplitude of the Feynman graphs is shown to be related to the fundamental group of the cellular complex

    Before Kukulkán

    Get PDF
    This volume illuminates human lifeways in the northern Maya lowlands prior to the rise of Chichén Itzá. This period and area have been poorly understood on their own terms, obscured by scholarly focus on the central lowland Maya kingdoms. "Before Kukulkán" is anchored in three decades of interdisciplinary research at the Classic Maya capital of Yaxuná, located at a contentious crossroads of the northern Maya lowlands. Using bioarchaeology, mortuary archaeology, and culturally sensitive mainstream archaeology, the authors create an in-depth regional understanding while also laying out broader ways of learning about the Maya past. Part 1 examines ancient lifeways among the Maya at Yaxuná, while part 2 explores different meanings of dying and cycling at the settlement and beyond: ancestral practices, royal entombment and desecration, and human sacrifice. The authors close with a discussion of the last years of occupation at Yaxuná and the role of Chichén Itzá in the abandonment of this urban center. "Before Kukulkán" provides a cohesive synthesis of the evolving roles and collective identities of locals and foreigners at the settlement and their involvement in the region’s trajectory. Theoretically informed and contextualized discussions offer unique glimpses of everyday life and death in the socially fluid Maya city. These findings, in conjunction with other documented series of skeletal remains from this region, provide a nuanced picture of the social and biocultural dynamics that operated successfully for centuries before the arrival of the Itzá

    Spin Foam Models of Yang-Mills Theory Coupled to Gravity

    Full text link
    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barret-Crane ansatz. In the Euclidian gravity case we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidian gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity.Comment: 10 page

    Discrete and continuum third quantization of Gravity

    Full text link
    We give a brief introduction to matrix models and the group field theory (GFT) formalism as realizations of the idea of a third quantization of gravity, and present in some more detail the idea and basic features of a continuum third quantization formalism in terms of a field theory on the space of connections, building up on the results of loop quantum gravity that allow to make the idea slightly more concrete. We explore to what extent one can rigorously define such a field theory. Concrete examples are given for the simple case of Riemannian GR in 3 spacetime dimensions. We discuss the relation between GFT and this formal continuum third quantized gravity, and what it can teach us about the continuum limit of GFTs.Comment: 21 pages, 5 eps figures; submitted as a contribution to the proceedings of the conference "Quantum Field Theory and Gravity Conference Regensburg 2010" (28 September - 1 October 2010, Regensburg/Bavaria); v2: preprint number include

    Topological field theories in n-dimensional spacetimes and Cartan's equations

    Full text link
    Action principles of the BF type for diffeomorphism invariant topological field theories living in n-dimensional spacetime manifolds are presented. Their construction is inspired by Cuesta and Montesinos' recent paper where Cartan's first and second structure equations together with first and second Bianchi identities are treated as the equations of motion for a field theory. In opposition to that paper, the current approach involves also auxiliary fields and holds for arbitrary n-dimensional spacetimes. Dirac's canonical analysis for the actions is detailedly carried out in the generic case and it is shown that these action principles define topological field theories, as mentioned. The current formalism is a generic framework to construct geometric theories with local degrees of freedom by introducing additional constraints on the various fields involved that destroy the topological character of the original theory. The latter idea is implemented in two-dimensional spacetimes where gravity coupled to matter fields is constructed out, which has indeed local excitations.Comment: LaTeX file, no figure

    Bubbles and jackets: new scaling bounds in topological group field theories

    Get PDF
    We use a reformulation of topological group field theories in 3 and 4 dimensions in terms of variables associated to vertices, in 3d, and edges, in 4d, to obtain new scaling bounds for their Feynman amplitudes. In both 3 and 4 dimensions, we obtain a bubble bound proving the suppression of singular topologies with respect to the first terms in the perturbative expansion (in the cut-off). We also prove a new, stronger jacket bound than the one currently available in the literature. We expect these results to be relevant for other tensorial field theories of this type, as well as for group field theory models for 4d quantum gravity.Comment: v2: Minor modifications to match published versio
    • …
    corecore