18 research outputs found

    Covid-19 Testing, Hospital Admission, and Intensive Care Among 2,026,227 United States Veterans Aged 54-75 Years.

    Get PDF
    IMPORTANCE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (Covid-19), an evolving pandemic. Limited data are available characterizing SARS-Cov-2 infection in the United States. OBJECTIVE: To determine associations between demographic and clinical factors and testing positive for coronavirus 2019 (Covid-19+), and among Covid-19+ subsequent hospitalization and intensive care. DESIGN, SETTING, AND PARTICIPANTS: Retrospective cohort study including all patients tested for Covid-19 between February 8 and March 30, 2020, inclusive. We extracted electronic health record data from the national Veterans Affairs Healthcare System, the largest integrated healthcare system in the United States, on 2,026,227 patients born between 1945 and 1965 and active in care. Exposures: Demographic data, comorbidities, medication history, substance use, vital signs, and laboratory measures. Laboratory tests were analyzed first individually and then grouped into a validated summary measure of physiologic injury (VACS Index). Main Outcomes and Measures: We evaluated which factors were associated with Covid-19+ among all who tested. Among Covid-19+ we identified factors associated with hospitalization or intensive care. We identified independent associations using multivariable and conditional multivariable logistic regression with multiple imputation of missing values. RESULTS: Among Veterans aged 54-75 years, 585/3,789 (15.4%) tested Covid-19+. In adjusted analysis (C-statistic=0.806) black race was associated with Covid-19+ (OR 4.68, 95% CI 3.79-5.78) and the association remained in analyses conditional on site (OR 2.56, 95% CI 1.89-3.46). In adjusted models, laboratory abnormalities (especially fibrosis-4 score [FIB-4] >3.25 OR 8.73, 95% CI 4.11-18.56), and VACS Index (per 5-point increase OR 1.62, 95% CI 1.43-1.84) were strongly associated with hospitalization. Associations were similar for intensive care. Although significant in unadjusted analyses, associations with comorbid conditions and medications were substantially reduced and, in most cases, no longer significant after adjustment. CONCLUSIONS AND RELEVANCE: Black race was strongly associated with Covid-19+, but not with hospitalization or intensive care. Among Covid-19+, risk of hospitalization and intensive care may be better characterized by laboratory measures and vital signs than by comorbid conditions or prior medication exposure

    Patterns of COVID-19 testing and mortality by race and ethnicity among United States veterans: A nationwide cohort study.

    Get PDF
    BACKGROUND: There is growing concern that racial and ethnic minority communities around the world are experiencing a disproportionate burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19). We investigated racial and ethnic disparities in patterns of COVID-19 testing (i.e., who received testing and who tested positive) and subsequent mortality in the largest integrated healthcare system in the United States. METHODS AND FINDINGS: This retrospective cohort study included 5,834,543 individuals receiving care in the US Department of Veterans Affairs; most (91%) were men, 74% were non-Hispanic White (White), 19% were non-Hispanic Black (Black), and 7% were Hispanic. We evaluated associations between race/ethnicity and receipt of COVID-19 testing, a positive test result, and 30-day mortality, with multivariable adjustment for a wide range of demographic and clinical characteristics including comorbid conditions, health behaviors, medication history, site of care, and urban versus rural residence. Between February 8 and July 22, 2020, 254,595 individuals were tested for COVID-19, of whom 16,317 tested positive and 1,057 died. Black individuals were more likely to be tested (rate per 1,000 individuals: 60.0, 95% CI 59.6-60.5) than Hispanic (52.7, 95% CI 52.1-53.4) and White individuals (38.6, 95% CI 38.4-38.7). While individuals from minority backgrounds were more likely to test positive (Black versus White: odds ratio [OR] 1.93, 95% CI 1.85-2.01, p < 0.001; Hispanic versus White: OR 1.84, 95% CI 1.74-1.94, p < 0.001), 30-day mortality did not differ by race/ethnicity (Black versus White: OR 0.97, 95% CI 0.80-1.17, p = 0.74; Hispanic versus White: OR 0.99, 95% CI 0.73-1.34, p = 0.94). The disparity between Black and White individuals in testing positive for COVID-19 was stronger in the Midwest (OR 2.66, 95% CI 2.41-2.95, p < 0.001) than the West (OR 1.24, 95% CI 1.11-1.39, p < 0.001). The disparity in testing positive for COVID-19 between Hispanic and White individuals was consistent across region, calendar time, and outbreak pattern. Study limitations include underrepresentation of women and a lack of detailed information on social determinants of health. CONCLUSIONS: In this nationwide study, we found that Black and Hispanic individuals are experiencing an excess burden of SARS-CoV-2 infection not entirely explained by underlying medical conditions or where they live or receive care. There is an urgent need to proactively tailor strategies to contain and prevent further outbreaks in racial and ethnic minority communities

    Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNetÂź convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNetÂź model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Virus nomenclature below the species level : a standardized nomenclature for filovirus strains and variants rescued from cDNA

    Get PDF
    Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratoryadapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming,\virus name[(\strain[/)\isolation host-suffix[/ \country of sampling[/\year of sampling[/\genetic variant designation[-\isolate designation[, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to ‘‘Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1’’ (with the suffix ‘‘rec’’ identifying the recombinant nature of the virus and ‘‘abc1’’ being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as ‘‘EBOV H.sap/COD/95/ Kik-abc1’’) and abbreviations (such as ‘‘EBOV/Kik-abc1’’) could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. ‘‘EBOV’’ would suffice if only one EBOV strain/variant/isolate is addressed.http://link.springer.com/journal/705hb201

    Virus nomenclature below the species level : a standardized nomenclature for laboratory animal-adapted strains and variants of viruses assigned to the family Filoviridae

    Get PDF
    The International Committee on Taxonomy of Viruses (ICTV) organizes the classification of viruses into taxa, but is not responsible for the nomenclature for taxa members. International experts groups, such as the ICTV Study Groups, recommend the classification and naming of viruses and their strains, variants, and isolates. The ICTV Filoviridae Study Group has recently introduced an updated classification and nomenclature for filoviruses. Subsequently, and together with numerous other filovirus experts, a consistent nomenclature for their natural genetic variants and isolates was developed that aims at simplifying the retrieval of sequence data from electronic databases. This is a first important step toward a viral genome annotation standard as sought by the US National Center for Biotechnology Information (NCBI). Here, this work is extended to include filoviruses obtained in the laboratory by artificial selection through passage in laboratory hosts. The previously developed template for natural filovirus genetic variant naming ( //<year of sampling>/-) is retained, but it is proposed to adapt the type of information added to each field for laboratory animal-adapted variants. For instance, the full-length designation of an Ebola virus Mayinga variant adapted at the State Research Center for Virology and Biotechnology “Vector” to cause disease in guinea pigs after seven passages would be akin to “Ebola virus VECTOR/C.porcellus-lab/COD/1976/Mayinga- GPA-P7”. As was proposed for the names of natural filovirus variants, we suggest using the fulllength designation in databases, as well as in the method section of publications. Shortened designations (such as “EBOV VECTOR/C.por/COD/76/May-GPA-P7”) and abbreviations (such as “EBOV/May-GPA-P7”) could be used in the remainder of the text depending on how critical it is to convey information contained in the full-length name. “EBOV” would suffice if only one EBOV strain/variant/isolate is addressed.This work was funded in part by the Joint Science and Technology Office for Chem Bio Defense (proposal #TMTI0048_09_RD_T to SB).http://www.springerlink.com/content/0304-8608/hb2013ab201

    The influence of intrinsically proton conductive electrode binder materials on HT-PEMFC performance

    No full text
    High temperature proton exchange membrane fuel cells (HT-PEMFCs) typically employ either acid-absorbing orhydrophobic electrode binders in their catalyst layers (CLs). A recently introduced alternative is the ionomericbinder PWN, poly(2,3,5,6-tetrafluorostyrene-4-phosphonic acid). In literature, PWN with a phosphonation degreeof 70% was shown to remarkably improve HT-PEMFC performance. Here, we investigate the influence of thephosphonation degree (40–95%) of this ionomeric binder on HT-PEMFC performance. PWN is employed in thecathode CL and compared to the commonly used polytetrafluoroethylene (PTFE) binder. The electrochemicalbehavior is tested at 180 ◩C at ambient pressure under H2/air conditions using a commercial phosphoric acid (PA)-doped PBI-membrane. HT-PEMFCs with PWN generally outperform fuel cells (FCs) with PTFE after a full break-inregarding peak power density (PPD), activation overpotential (as studied by Tafel analysis), and reproducibility inthe mass transport region. Further, PWN-electrodes show higher electrochemically active surface areas (ECSAs)than PTFE-electrodes after completing the break-in. We find that the phosphonation degree has a substantial impacton the PPD, with PWNs with lower phosphonation degrees (40–60%) outperforming highly phosphonated PWNs(70–95%). Taken together, PWN as an ionomeric electrode binder in HT-PEMFCs shows remarkable improvementsin performance, but a precise adjustment of the phosphonation degree is required to obtain optimal results

    Review and Prospects of PEM Water Electrolysis at Elevated Temperature Operation

    No full text
    Polymer electrolyte membrane water electrolyzers (PEMWE) are currently restricted to an operating temperature range between 50 to 80 °C. This review shows that elevated temperature (ET) above 90 °C can be advantageous with respect to i) reduced cell voltages, ii) a reduction of catalyst loading or possibly the employment of less noble electrocatalysts, and iii) a greater potential for waste heat utilization when the electrolyzer is operated in exothermal mode (when the cell voltage is higher than the thermoneutral voltage). Together with presenting an overview of the materials and components utilized in elevated temperature PEMWE under liquid and steam operation, this article summarizes the experimental and modeling performances reported to date, highlights the challenges ahead, and suggests aspects, which will need to be considered to improve the performance at elevated temperature. Key points, which arise from this work are the extensive need of re‐assessing the material selection both for the cell components and also at a system level, the effects and optimization of working with steam operation, and in the long run, the need for techno‐economic analyses to ultimately assess whether efficiency gains will truly translate to a cost‐effective technology alternative
    corecore