21 research outputs found

    Complexity

    No full text

    SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder.

    Get PDF
    N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5a-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation

    ATP6V0A2 mutations present in two Mexican Mestizo children with an autosomal recessive cutis laxa syndrome type IIA

    No full text
    Patients with ARCL-IIA harbor mutations in ATP6V0A2 that codes for an organelle proton pump. The ARCL-IIA syndrome characteristically presents a combined glycosylation defect affecting N-linked and O-linked glycosylations, differentiating it from other cutis laxa syndromes and classifying it as a Congenital Disorder of Glycosylation (ATP6V0A2-CDG). We studied two Mexican Mestizo patients with a clinical phenotype corresponding to an ARCL-IIA syndrome. Both patients presented abnormal transferrin (N-linked) glycosylation but Patient 1 had a normal ApoCIII (O-linked) glycosylation profile. Mutational screening of ATP6V0A2 using cDNA and genomic DNA revealed in Patient 1 a previously reported homozygous nonsense mutation c.187C>T (p.R63X) associated with a novel clinical finding of a VSD. In Patient 2 we found a homozygous c.2293C>T (p.Q765X) mutation that had been previously reported but found that it also altered RNA processing generating a novel transcript not previously identified (r.2176_2293del; p.F726Sfs*10). This is the first report to describe Mestizo patients with molecular diagnosis of ARCL-IIA/ATP6V0A2-CDG and to establish that their mutations are the first to be found in patients from different regions of the world and with different genetic backgrounds

    Congenital Disorders of Glycosylation

    No full text
    This chapter discusses inherited human diseases that are caused by defects in glycan biosynthesis and metabolism (congenital disorders of glycosylation, CDGs). Representative examples are described of genetic defects in the major glycan families and what lessons we can learn from them about glycobiology. Among genetic disorders of glycosylation, those caused by somatic mutations are described in Chapter 46. Disorders affecting the lysosomal degradation of glycans are described in Chapter 44. Although the term “congenital disorders” by definition include those caused by nongenetic, unfavorable in utero conditions, the term “congenital disorders of glycosylation (CDG)” is now widely used as an equivalent of inherited disorders of glycosylation
    corecore