1,298 research outputs found

    Varicella-zoster virus infection: natural history, clinical manifestations, immunity and current and future vaccination strategies

    Get PDF
    Varicella-zoster virus (VZV) is the etiologic agent of varicella (chicken pox), a childhood exanthematic disease that develops as a result of primary infection, and zoster (shingles), caused by reactivation of the virus persisting in a latent form in the dorsal sensory ganglia. Although varicella is generally a mild self-limiting illness, in immunocompromised subjects and adults it can have a serious clinical course that can lead to permanent damage of the central nervous system. In these and in most zoster cases, treatment with anti-herpetic drugs and/or immunotherapy is necessary. Because it is highly contagious, varicella is one of the most common exanthematic diseases. It is preventable by vaccination with an attenuated vaccine administered around the first year of age, and with a boost vaccination in school age. This article briefly describes the natural history and pathophysiology of VZV infection and its current epidemiology and provides an overview of current and future vaccine options to protect against varicella and/or zoster

    Evaluation of T cell immunity against human cytomegalovirus: Impact on patient management and risk assessment of vertical transmission

    Get PDF
    Cytomegalovirus (CMV) is one of the most common infectious agents, infecting the general population at an early age without causing morbidity most of the time. However, on particular occasions, it may represent a serious risk, as active infection is associated with rejection and disease after solid organ transplantation or fetal transmission during pregnancy. Several methods for CMV diagnosis are available on the market, but because infection is so common, careful selection is needed to discriminate primary infection from reactivation. This review focuses on methods based on CMV-specific T cell reactivity to help monitor the consequences of CMV infection/reactivation in specific categories of patients. This review makes an attempt at discussing the pros and cons of the methods available

    Tweaking Mesenchymal Stem/Progenitor Cell Immunomodulatory Properties with Viral Vectors Delivering Cytokines

    Get PDF
    Mesenchymal Stem Cells (MSCs) can be found in various body sites. Their main role is to differentiate into cartilage, bone, muscle, and fat cells to allow tissue maintenance and repair. During inflammation, MSCs exhibit important immunomodulatory properties that are not constitutive, but require activation, upon which they may exert immunosuppressive functions. MSCs are defined as "sensors of inflammation" since they modulate their ability of interfering with the immune system both in vitro and in vivo upon interaction with different factors. MSCs may influence immune responses through different mechanisms, such as direct cell-to-cell contact, release of soluble factors, and through the induction of anergy and apoptosis. Human MSCs are defined as plastic-adherent cells expressing specific surface molecules. Lack of MHC class II antigens makes them appealing as allogeneic tools for the therapy of both autoimmune diseases and cancer. MSC therapeutic potential could be highly enhanced by the expression of exogenous cytokines provided by transduction with viral vectors. In this review, we attempt to summarize the results of a great number of in vitro and in vivo studies aimed at improving the ability of MSCs as immunomodulators in the therapy of autoimmune, degenerative diseases and cancer. We will also compare results obtained with different vectors to deliver heterologous genes to these cells

    Cancerogenic parasites in veterinary medicine: a narrative literature review

    Get PDF
    Parasite infection is one of the many environmental factors that can significantly contribute to carcinogenesis and is already known to be associated with a variety of malignancies in both human and veterinary medicine. However, the actual number of cancerogenic parasites and their relationship to tumor development is far from being fully understood, especially in veterinary medicine. Thus, the aim of this review is to investigate parasite-related cancers in domestic and wild animals and their burden in veterinary oncology. Spontaneous neoplasia with ascertained or putative parasite etiology in domestic and wild animals will be reviewed, and the multifarious mechanisms of protozoan and metazoan cancer induction will be discussed

    Evolution of viruses and the emergence of SARS-CoV-2 variants

    Get PDF
    Life implies adaptation. This is one of the fundamental principles that has permitted most living species to survive through ages in an ever-changing environment. Spontaneously occurring events have shaped also virus populations and their fitness. Thanks to their plasticity, viruses have thrived in extremely dissimilar conditions. Unsurprisingly, SARS-CoV-2, the etiological agent of COVID-19, is no exception. Thanks to an unprecedented rate of molecular tracing and sequence scrutiny, the virus was followed in all its changes and shown to evolve in such a way as to possibly determine subsequent waves of infection after the first global and massive outbreak. This review illustrates the major modifications occurred to the virus since its discovery. We describe the potential advantages that these changes conveyed as regards SARS-CoV-2 transmissibility, resistance to host innate and adaptive barriers and molecular diagnosis

    A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with <sup>51</sup>chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry.</p> <p>Results</p> <p>The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies.</p> <p>Conclusion</p> <p>Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.</p

    CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Proviral DNA Circles with Reformed Long Terminal Repeats

    Get PDF
    Gene editing may be used to excise the human immunodeficiency virus type 1 (HIV-1) provirus from the host cell genome, possibly eradicating the infection. Here, using cells acutely or latently infected by HIV-1 and treated with long terminal repeat (LTR)-targeting CRISPR/Cas9, we show that the excised HIV-1 provirus persists for a few weeks and may rearrange in circular molecules. Although circular proviral DNA is naturally formed during HIV-1 replication, we observed that gene editing might increase proviral DNA circles with restored LTRs. These extrachromosomal elements were recovered and probed for residual activity through their transfection in uninfected cells. We discovered that they can be transcriptionally active in the presence of Tat and Rev. Although confirming that gene editing is a powerful tool to eradicate HIV-1 infection, this work highlights that, to achieve this goal, the LTRs must be cleaved in several pieces to avoid residual activity and minimize the risk of reintegration in the context of genomic instability, possibly caused by the off-target activity of Cas9. IMPORTANCE The excision of HIV-1 provirus from the host cell genome has proven feasible in vitro and, to some extent, in vivo. Among the different approaches, CRISPR/Cas9 is the most promising tool for gene editing. The present study underlines the remarkable effectiveness of CRISPR/Cas9 in removing the HIV-1 provirus from infected cells and investigates the fate of the excised HIV-1 genome. This study demonstrates that the free provirus may persist in the cell after editing and in appropriate circumstances may reactivate. As an episome, it might be transcriptionally active, especially in the presence of Tat and Rev. The persistence of the HIV-1 episome was strongly decreased by gene editing with multiple targets. Although gene editing has the potential to eradicate HIV-1 infection, this work highlights a potential issue that warrants further investigation

    Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin

    Get PDF
    Acid ceramidase (AC) is a lysosomal hydrolase encoded by the ASAH1 gene, which cleaves ceramides into sphingosine and fatty acid. AC is expressed at high levels in most human melanoma cell lines and may confer resistance against chemotherapeutic agents. One such agent, doxorubicin, was shown to increase ceramide levels in melanoma cells. Ceramides contribute to the regulation of autophagy and apoptosis. Here we investigated the impact of AC ablation via CRISPR-Cas9 gene editing on the response of A375 melanoma cells to doxorubicin. We found that doxorubicin activates the autophagic response in wild-type A375 cells, which effectively resist apoptotic cell death. In striking contrast, doxorubicin fails to stimulate autophagy in A375 AC-null cells, which rapidly undergo apoptosis when exposed to the drug. The present work highlights changes that affect melanoma cells during incubation with doxorubicin, in A375 melanoma cells lacking AC. We found that the remarkable reduction in recovery rate after doxorubicin treatment is strictly associated with the impairment of autophagy, that forces the AC-inhibited cells into apoptotic path

    Immunotherapy with internally inactivated virus loaded dendritic cells boosts cellular immunity but does not affect feline immunodeficiency virus infection course

    Get PDF
    Immunotherapy of feline immunodeficiency virus (FIV)-infected cats with monocyte-derived dendritic cells (MDCs) loaded with aldrithiol-2 (AT2)-inactivated homologous FIV was performed. Although FIV-specific lymphoproliferative responses were markedly increased, viral loads and CD4+ T cell depletion were unaffected, thus indicating that boosting antiviral cell-mediated immunity may not suffice to modify infection course appreciably

    Mouse mammary tumour virus-like env nucleotide and p14 signal peptide are present in feline mammary carcinomas, but not in neoplastic or dysplastic canine mammary lesions

    Get PDF
    Mouse mammary tumour virus-like (MMTV-like) is suspected to be involved in human breast cancer and it has been hypothesized that companion animals might have a role in viral transmission. The aim of our study was to investigate the presence of MMTV-like nucleotide sequences and viral protein in a larger number of feline (FMCs) and canine mammary carcinomas (CMCs) by nested PCR and immunohistochemistry. Results showed that the presence of MMTV-like env sequence in FMCs was 7% (6/86), while all the CMCs and canine dysplastic lesions scored negative. All PCR-positive FMCs scored positive for the MMTV p14 signal peptide of the envelope precursor protein of the virus. In contrast, all PCR-negative FMCs and canine mammary lesions were also negative for immunohistochemistry analysis. Canine and feline normal mammary gland tissues scored negative for both PCR and MMTV-p14 protein. Multiple nucleotide alignment of MMTV-like env gene sequences isolated from cat showed 97% and 99% similarity with HMTV and MMTV, respectively, while the others two presented some polimorphisms. Particularly the sequences of one of these two tumors showed a polymorphism (c.7575 A> G), that causes a previously unreported amino acid substitution (Thr > Ala). In conclusion, the results of our study showed the presence of MMTV-like sequences and viral protein in some FMCs. Further studies are needed to understand whether this virus does play a role in the development of FMCs, if MMTV-like is an exogenous virus as these data suggest and, in such a case, how and from whom this virus was acquired
    • …
    corecore