231 research outputs found

    Boron enrichment in Martian clay

    Get PDF
    We have detected a concentration of boron in martian clay far in excess of that in any previously reported extra-terrestrial object. This enrichment indicates that the chemistry necessary for the formation of ribose, a key component of RNA, could have existed on Mars since the formation of early clay deposits, contemporary to the emergence of life on Earth. Given the greater similarity of Earth and Mars early in their geological history, and the extensive disruption of Earth's earliest mineralogy by plate tectonics, we suggest that the conditions for prebiotic ribose synthesis may be better understood by further Mars exploration

    Emergent properties hidden in plane view: Strong electronic correlations at oxide interfaces

    Full text link
    Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. Here we illustrate the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergent properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical or optical boundary conditions and excitations.Comment: 16 pages, 5 figure

    Heavy-Quark Masses from the Fermilab Method in Three-Flavor Lattice QCD

    Get PDF
    We report on heavy quark mass calculations using Fermilab heavy quarks. Lattice calculations of heavy-strange meson masses are combined with one-loop (automated) lattice perturbation theory to arrive at the quark mass. Mesons are constructed from Fermilab heavy quarks and staggered light quarks. We use the MILC ensembles at three lattice spacings and sea quark mass ratios of mu,d/ms=0.1m_{\rm u,d} / m_{\rm s} = 0.1 to 0.4. Preliminary results for the bottom quark are given in the potential subtracted scheme

    Reconstructing the 3-D Trajectories of CMEs in the Inner Heliosphere

    Full text link
    A method for the full three-dimensional (3-D) reconstruction of the trajectories of coronal mass ejections (CMEs) using Solar TErrestrial RElations Observatory (STEREO) data is presented. Four CMEs that were simultaneously observed by the inner and outer coronagraphs (COR1 and 2) of the Ahead and Behind STEREO satellites were analysed. These observations were used to derive CME trajectories in 3-D out to ~15Rsun. The reconstructions using COR1/2 data support a radial propagation model. Assuming pseudo-radial propagation at large distances from the Sun (15-240Rsun), the CME positions were extrapolated into the Heliospheric Imager (HI) field-of-view. We estimated the CME velocities in the different fields-of-view. It was found that CMEs slower than the solar wind were accelerated, while CMEs faster than the solar wind were decelerated, with both tending to the solar wind velocity.Comment: 17 pages, 10 figures, 1 appendi
    • …
    corecore