25 research outputs found

    Apoptosis- and necrosis-induced changes in light attenuation measured by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) was used to determine optical properties of pelleted human fibroblasts in which necrosis or apoptosis had been induced. We analysed the OCT data, including both the scattering properties of the medium and the axial point spread function of the OCT system. The optical attenuation coefficient in necrotic cells decreased from 2.2 ± 0.3 mm−1 to 1.3 ± 0.6 mm−1, whereas, in the apoptotic cells, an increase to 6.4 ± 1.7 mm−1 was observed. The results from cultured cells, as presented in this study, indicate the ability of OCT to detect and differentiate between viable, apoptotic, and necrotic cells, based on their attenuation coefficient. This functional supplement to high-resolution OCT imaging can be of great clinical benefit, enabling on-line monitoring of tissues, e.g. for feedback in cancer treatment

    >

    No full text
    We determined the scattering coefficient and scattering anisotropy of blood samples with varying hematocrit using optical coherence tomography measurements and a curve fitting procedure. Initial results show much lower scattering coefficient and scattering anisotropy than theoretically expected, which are likely attributed to the highly forward scattering nature of blood

    Why so few? Landslides triggered by the 2002 Denali earthquake, Alaska

    No full text
    The 2002 M-w 7.9 Denali Fault earthquake, Alaska, provides an unparalleled opportunity to investigate in quantitative detail the regional hillslope mass-wasting response to strong seismic shaking in glacierized terrain. We present the first detailed inventory of similar to 1580 coseismic slope failures, out of which some 20% occurred above large valley glaciers, based on mapping from multi-temporal remote sensing data. We find that the Denali earthquake produced at least one order of magnitude fewer landslides in a much narrower corridor along the fault ruptures than empirical predictions for an M 8 earthquake would suggest, despite the availability of sufficiently steep and dissected mountainous topography prone to frequent slope failure. In order to explore potential controls on the reduced extent of regional coseismic landsliding we compare our data with inventories that we compiled for two recent earthquakes in periglacial and formerly glaciated terrain, i.e. at Yushu, Tibet (M-w 6.9, 2010), and Aysen Fjord, Chile (2007 M-w 6.2). Fault movement during these events was, similarly to that of the Denali earthquake, dominated by strike-slip offsets along near-vertical faults. Our comparison returns very similar coseismic landslide patterns that are consistent with the idea that fault type, geometry, and dynamic rupture process rather than widespread glacier cover were among the first-order controls on regional hillslope erosional response in these earthquakes. We conclude that estimating the amount of coseismic hillslope sediment input to the sediment cascade from earthquake magnitude alone remains highly problematic, particularly if glacierized terrain is involved. (C) 2014 Elsevier Ltd. All rights reserved

    Complex rupture mechanism and topography control symmetry of mass-wasting pattern, 2010 Haiti earthquake

    No full text
    The 12 January 2010 M-w 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Leogane blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo-Plantain Garden Fault (EPGF). The earthquake triggered >4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of similar to 2150 km(2). The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Leogane and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking. (C) 2012 Elsevier B.V. All rights reserved

    Complex rupture mechanism and topography control symmetry of mass - wasting pattern, 2010 Haiti earthquake

    No full text
    The 12 January 2010 Mw 7.0 Haiti earthquake occurred in a complex deformation zone at the boundary between the North American and Caribbean plates. Combined geodetic, geological and seismological data posited that surface deformation was driven by rupture on the Léogâne blind thrust fault, while part of the rupture occurred as deep lateral slip on the Enriquillo–Plantain Garden Fault (EPGF). The earthquake triggered > 4490 landslides, mainly shallow, disrupted rock falls, debris-soil falls and slides, and a few lateral spreads, over an area of ~ 2150 km2. The regional distribution of these slope failures defies those of most similar earthquake-triggered landslide episodes reported previously. Most of the coseismic landslides did not proliferate in the hanging wall of the main rupture, but clustered instead at the junction of the blind Léogâne and EPGF ruptures, where topographic relief and hillslope steepness are above average. Also, low-relief areas subjected to high coseismic uplift were prone to lesser hanging wall slope instability than previous studies would suggest. We argue that a combined effect of complex rupture dynamics and topography primarily control this previously rarely documented landslide pattern. Compared to recent thrust fault-earthquakes of similar magnitudes elsewhere, we conclude that lower static stress drop, mean fault displacement, and blind ruptures of the 2010 Haiti earthquake resulted in fewer, smaller, and more symmetrically distributed landslides than previous studies would suggest. Our findings caution against overly relying on across-the-board models of slope stability response to seismic ground shaking

    Hematocrit-dependence of the scattering coefficient of blood determined by optical coherence tomography

    No full text
    We determined the scattering coefficient and scattering anisotropy of blood samples with varying hematocrit using optical coherence tomography measurements and a curve fitting procedure. Initial results show much lower scattering coefficient and scattering anisotropy than theoretically expected. Alternative fitting strategies will be explored

    Changes in optical properties of cells and tissue after induction of apoptosis

    No full text
    Apoptosis is the effector of regulated cell death and plays a role in many physiologic and pathologic processes. It is characterized by a highly regulated condensation and fragmentation of the cell nucleus, and breakup of the entire cell into vesicles, (apoptotic bodies) containing cell organelles and fragments of the nucleus. Previous experiments indicate that changes in optical properties after induction of apoptosis might be detected using optical imaging systems, such as optical coherence tomography (OCT), due to an increase in scattering of apoptotic cells. The previous in vitro experiments are extended to ex vivo and in vivo experiments. A nearly two-fold increase in attenuation coefficient is observed in a tissue culture of porcine carotid artery, in which apoptosis is induced by balloon dilation, and a significant 20 % increase in an in vivo setup. The preliminary results of this study indicate that the apoptotic process may also be detected ex vivo and in vivo using optical imaging systems, such as optical coherence tomography (OCT), due to an increase in scattering by the typical disintegration of cellular material

    Discrimination of atherosclerotic plaque constituents based on local measurements of optical attenuation coefficients by OCT

    No full text
    Imaging of human autopsy samples was performed from the luminal side with a high (3.5 μm axial and 7 μm lateral) resolution OCT system (around 800 nm) or a regular (15-20 μm axial and 20 μm lateral resolution) OCT system (around 1300 nm). For each sample, dimensions were measured by histomorphometry and OCT and the optical attenuation was measured. Quantitative analysis showed a strong and significant correlation between OCT and histology cap thickness measurements for both OCT systems. For both systems, the measured attenuation coefficients of diffuse intimal thickening and lipid-rich regions differed significantly from media and calcifications. Both the high and regular resolution OCT systems can precisely image the atherosclerotic plaques. Quantitative analysis of the OCT signals allowed in situ determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest, which can further help to discriminate the plaque and arterial wall components

    Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography

    No full text
    Optical coherence tomography (OCT) is a novel, high-resolution diagnostic tool that is capable of imaging the arterial wall and plaques. The differentiation between different types of atherosclerotic plaque is based on qualitative differences in gray levels and structural appearance. We hypothesize that a quantitative data analysis of the OCT signal allows measurement of light attenuation by the local tissue components, which can facilitate quantitative spatial discrimination between plaque constituents. High-resolution OCT images (at 800 nm) of human atherosclerotic arterial segments obtained at autopsy were histologically validated. Using a new, simple analysis algorithm, which incorporates the confocal properties of the OCT system, the light attenuation coefficients for these constituents were determined: for diffuse intimal thickening (5.5 +/- 1.2 mm(-1)) and lipid-rich regions (3.2 +/- 1.1 mm(-1)), the attenuation differed significantly from media (9.9 +/- 1.8 mm(-1)), calcifications (11.1 +/- 4.9 mm(-1)) and thrombi (11.2 +/- 2.3 mm(-1)) (p <0.01). These proof of principle studies show that simple quantitative analysis of the OCT signals allows spatial determination of the intrinsic optical attenuation coefficient of atherosclerotic tissue components within regions of interest. Combining morphological imaging by OCT with the observed differences in optical attenuation coefficients of the various regions may enhance discrimination between various plaque type
    corecore