10,836 research outputs found

    Atmospheric Sulfur Photochemistry on Hot Jupiters

    Full text link
    We develop a new 1D photochemical kinetics code to address stratospheric chemistry and stratospheric heating in hot Jupiters. Here we address optically active S-containing species and CO2 at 1200 < T < 2000 K. HS (mercapto) and S2 are highly reactive species that are generated photochemically and thermochemically from H2S with peak abundances between 1-10 mbar. S2 absorbs UV between 240 and 340 nm and is optically thick for metallicities [SH] > 0 at T > 1200 K. HS is probably more important than S2, as it is generally more abundant than S2 under hot Jupiter conditions and it absorbs at somewhat redder wavelengths. We use molecular theory to compute an HS absorption spectrum from sparse available data and find that HS should absorb strongly between 300 and 460 nm, with absorption at the longer wavelengths being temperature sensitive. When the two absorbers are combined, radiative heating (per kg of gas) peaks at 100 microbars, with a total stratospheric heating of about 8 x 10^4 W/m^2 for a jovian planet orbiting a solar-twin at 0.032 AU. Total heating is insensitive to metallicity. The CO2 mixing ratio is a well-behaved quadratic function of metallicity, ranging from 1.6 x 10^-8 to 1.6 x 10^-4 for -0.3 < [M/H] < 1.7. CO2 is insensitive to insolation, vertical mixing, temperature (1200 < T <2000 K), and gravity. The photochemical calculations confirm that CO2 should prove a useful probe of planetary metallicity.Comment: Astrophysical Journal Lett. in press; important revision includes effect of updated thermodynamic data and a new opacity sourc

    The Hidden Spatial Geometry of Non-Abelian Gauge Theories

    Full text link
    The Gauss law constraint in the Hamiltonian form of the SU(2)SU(2) gauge theory of gluons is satisfied by any functional of the gauge invariant tensor variable ϕij=BiaBja\phi^{ij} = B^{ia} B^{ja}. Arguments are given that the tensor Gij=(ϕ−1)ij det⁥BG_{ij} = (\phi^{-1})_{ij}\,\det B is a more appropriate variable. When the Hamiltonian is expressed in terms of ϕ\phi or GG, the quantity Γjki\Gamma^i_{jk} appears. The gauge field Bianchi and Ricci identities yield a set of partial differential equations for Γ\Gamma in terms of GG. One can show that Γ\Gamma is a metric-compatible connection for GG with torsion, and that the curvature tensor of Γ\Gamma is that of an Einstein space. A curious 3-dimensional spatial geometry thus underlies the gauge-invariant configuration space of the theory, although the Hamiltonian is not invariant under spatial coordinate transformations. Spatial derivative terms in the energy density are singular when det⁥G=det⁥B=0\det G=\det B=0. These singularities are the analogue of the centrifugal barrier of quantum mechanics, and physical wave-functionals are forced to vanish in a certain manner near det⁥B=0\det B=0. It is argued that such barriers are an inevitable result of the projection on the gauge-invariant subspace of the Hilbert space, and that the barriers are a conspicuous way in which non-abelian gauge theories differ from scalar field theories.Comment: 19 pages, TeX, CTP #223

    Three flavour Quark matter in chiral colour dielectric model

    Get PDF
    We investigate the properties of quark matter at finite density and temperature using the nonlinear chiral extension of Colour Dielectric Model (CCM). Assuming that the square of the meson fields devlop non- zero vacuum expectation value, the thermodynamic potential for interacting three flavour matter has been calculated. It is found that and and remain zero in the medium whereas changes in the medium. As a result, uu and dd quark masses decrease monotonically as the temperature and density of the quark matter is increased.In the present model, the deconfinement density and temperature is found to be lower compared to lattice results. We also study the behaviour of pressure and energy density above critical temperature.Comment: Latex file. 5 figures available on request. To appear in Phys. Rev.

    A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres

    Full text link
    We highlight the importance of gaseous TiO and VO opacity on the highly irradiated close-in giant planets. The atmospheres of these planets naturally fall into two classes that are somewhat analogous to the M- and L-type dwarfs. Those that are warm enough to have appreciable opacity due to TiO and VO gases we term the ``pM Class'' planets, and those that are cooler we term ``pL Class'' planets. We calculate model atmospheres for these planets, including pressure-temperature profiles, spectra, and characteristic radiative time constants. We show that pM Class planets have hot stratospheres ∌\sim2000 K and appear ``anomalously'' bright in the mid infrared secondary eclipse, as was recently found for planets HD 149026b and HD 209458b. This class of planets absorbs incident flux and emits thermal flux from high in their atmospheres. Consequently, they will have large day/night temperature contrasts and negligible phase shifts between orbital phase and thermal emission light curves, because radiative timescales are much shorter than possible dynamical timescales. The pL Class planets absorb incident flux deeper in the atmosphere where atmospheric dynamics will more readily redistribute absorbed energy. This will lead to cooler day sides, warmer night sides, and larger phase shifts in thermal emission light curves. Around a Sun-like primary this boundary occurs at ∌\sim0.04-0.05 AU. The eccentric transiting planets HD 147506b and HD 17156b alternate between the classes. Thermal emission in the optical from pM Class planets is significant red-ward of 400 nm, making these planets attractive targets for optical detection. The difference in the observed day/night contrast between ups Andromeda b (pM Class) and HD 189733b (pL Class) is naturally explained in this scenario. (Abridged.)Comment: Accepted to the Astrophysical Journa

    Tidally Triggered Star Formation in Close Pairs of Galaxies: Major and Minor Interactions

    Full text link
    We study star formation in a sample of 345 galaxies in 167 pairs and compact groups drawn from the original CfA2 Redshift Survey and from a follow-up search for companions. We construct our sample with attention to including pairs with luminosity contrast |\Delta m_R| >= 2. These 57 galaxies with |\Delta m_R| >= 2 provide a set of nearby representative cases of minor interactions, a central feature of the hierarchical galaxy formation model. Here we report the redshifts and positions of the 345 galaxies in our sample, and of 136 galaxies in apparent pairs that are superpositions. In the pairs sample as a whole, there are strong correlations between the equivalent width of the H\alpha emission line and the projected spatial and the line-of-sight velocity separation of the pair. For pairs of small luminosity contrast, |\Delta m_R| < 2, the member galaxies show a correlation between the equivalent width of H\alpha and the projected spatial separation of the pair. However, for pairs with large luminosity contrast, |\Delta m_R| >= 2, we detect no correlation between the equivalent width of H\alpha and the projected spatial separation. The relative luminosity of the companion galaxy is more important in a gravitational tidal interaction than the intrinsic luminosity of the galaxy. Central star formation across the entire pairs sample depends strongly on the luminosity ratio, |\Delta m_R|, a reasonable proxy for the mass ratio of the pair; pairs composed of similarly luminous galaxies produce the strongest bursts of star formation. Pairs with |\Delta m_R| >= 2 rarely have EW(H\alpha) >~ 70 Ang.Comment: Minor revisions following journal proof

    Half-Life of 14^{14}O

    Get PDF
    We have measured the half-life of 14^{14}O, a superallowed (0+→0+)(0^{+} \to 0^{+}) ÎČ\beta decay isotope. The 14^{14}O was produced by the 12^{12}C(3^{3}He,n)14^{14}O reaction using a carbon aerogel target. A low-energy ion beam of 14^{14}O was mass separated and implanted in a thin beryllium foil. The beta particles were counted with plastic scintillator detectors. We find t1/2=70.696±0.052t_{1/2} = 70.696\pm 0.052 s. This result is 1.5σ1.5\sigma higher than an average value from six earlier experiments, but agrees more closely with the most recent previous measurement.Comment: 10 pages, 5 figure

    Energies of knot diagrams

    Full text link
    We introduce and begin the study of new knot energies defined on knot diagrams. Physically, they model the internal energy of thin metallic solid tori squeezed between two parallel planes. Thus the knots considered can perform the second and third Reidemeister moves, but not the first one. The energy functionals considered are the sum of two terms, the uniformization term (which tends to make the curvature of the knot uniform) and the resistance term (which, in particular, forbids crossing changes). We define an infinite family of uniformization functionals, depending on an arbitrary smooth function ff and study the simplest nontrivial case f(x)=x2f(x)=x^2, obtaining neat normal forms (corresponding to minima of the functional) by making use of the Gauss representation of immersed curves, of the phase space of the pendulum, and of elliptic functions

    Comparative Planetary Atmospheres: Models of TrES-1 and HD209458b

    Full text link
    We present new self-consistent atmosphere models for transiting planets TrES-1 and HD209458b. The planets were recently observed with the Spitzer Space Telescope in bands centered on 4.5 and 8.0 ÎŒ\mum, for TrES-1, and 24 ÎŒ\mum, for HD209458b. We find that standard solar metallicity models fit the observations for HD209458b. For TrES-1, which has an T_eff ~300 K cooler, we find that models with a metallicity 3-5 times enhanced over solar abundances can match the 1σ\sigma error bar at 4.5 ÎŒ\mum and 2σ\sigma at 8.0ÎŒ\mum. Models with solar abundances that included energy deposition into the stratosphere give fluxes that fall within the 2σ\sigma error bars in both bands. The best-fit models for both planets assume that reradiation of absorbed stellar flux occurs over the entire planet. For all models of both planets we predict planet/star flux ratios in other Spitzer bandpasses.Comment: Accepted to the Astrophysical Journal Letters, May 17, 200

    Visual categorization and the parietal cortex

    Get PDF
    The primate brain is adept at rapidly grouping items and events into functional classes, or categories, in order to recognize the significance of stimuli and guide behavior. Higher cognitive functions have traditionally been considered the domain of frontal areas. However, increasing evidence suggests that parietal cortex is also involved in categorical and associative processes. Previous work showed that the parietal cortex is highly involved in spatial processing, attention, and saccadic eye movement planning, and more recent studies have found decision-making signals in lateral intraparietal area (LIP). We recently found that a subdivision of parietal cortex, LIP, reflects learned categories for multiple types of visual stimuli. Additionally, a comparison of categorization signals in parietal and frontal areas found stronger and earlier categorization signals in parietal cortex arguing that, in trained animals, parietal abstract association or category signals are unlikely to arise via feedback from prefrontal cortex (PFC)
    • 

    corecore