5,897 research outputs found
Lead salt diode lasers and development of tunable solid state lasers for remote sensing
Extensive studies of the output characteristics of single quantum well lead-telluride lasers developed at the General Motors Research Laboratories were carried out. Threshold currents, output powers and line structures were measured as a function of temperature. Very low-current lasing thresholds, record high operating temperatures and over 30% tuning ranges were achieved. Excellent reproducibilities, good far-field patterns and reasonable linewidths (approx. 500 kHz) were found
On Supermultiplet Twisting and Spin-Statistics
Twisting of off-shell supermultiplets in models with 1+1-dimensional
spacetime has been discovered in 1984, and was shown to be a generic feature of
off-shell representations in worldline supersymmetry two decades later. It is
shown herein that in all supersymmetric models with spacetime of four or more
dimensions, this off-shell supermultiplet twisting, if non-trivial, necessarily
maps regular (non-ghost) supermultiplets to ghost supermultiplets. This feature
is shown to be ubiquitous in all fully off-shell supersymmetric models with
(BV/BRST-treated) constraints.Comment: Extended version, including a new section on manifestly off-shell and
supersymmetric BRST treatment of gauge symmetry; added reference
Dynamics of Diblock Copolymers in Dilute Solutions
We consider the dynamics of freely translating and rotating diblock (A-B),
Gaussian copolymers, in dilute solutions. Using the multiple scattering
technique, we have computed the diffusion and the friction coefficients D_AB
and Zeta_AB, and the change Eta_AB in the viscosity of the solution as
functions of x = N_A/N and t = l_B/l_A, where N_A, N are the number of segments
of the A block and of the whole copolymer, respectively, and l_A, l_B are the
Kuhn lengths of the A and B blocks. Specific regimes that maximize the
efficiency of separation of copolymers with distinct "t" values, have been
identified.Comment: 20 pages Revtex, 7 eps figures, needs epsf.tex and amssymb.sty,
submitted to Macromolecule
Spatial Constraint Corrections to the Elasticity of dsDNA Measured with Magnetic Tweezers
In this paper, we have studied, within a discrete WLC model, the spatial
constraints in magnetic tweezers used in single molecule experiments. Two
elements are involved: first, the fixed plastic slab on which is stuck the
initial strand, second, the magnetic bead which pulls (or twists) the attached
molecule free end. We have shown that the bead surface can be replaced by its
tangent plane at the anchoring point, when it is close to the bead south pole
relative to the force. We are led to a model with two parallel repulsive
plates: the fixed anchoring plate and a fluctuating plate, simulating the bead,
in thermal equilibrium with the system. The bead effect is a slight upper shift
of the elongation, about four times smaller than the similar effect induced by
the fixed plate. This rather unexpected result, has been qualitatively
confirmed within the soluble Gaussian model. A study of the molecule elongation
versus the countour length exhibits a significant non-extensive behaviour. The
curve for short molecules (with less than 2 kbp) is well fitted by a straight
line, with a slope given by the WLC model, but it does not go through the
origin. The non-extensive offset gives a 15% upward shift to the elongation of
a 2 kbp molecule stretched by a 0.3 pN force.Comment: 28 pages, 6 figures An explanatory figure has been added. The
physical interpretation of the results has been made somewhat more
transparen
Some Relations between Twisted K-theory and E8 Gauge Theory
Recently, Diaconescu, Moore and Witten provided a nontrivial link between
K-theory and M-theory, by deriving the partition function of the Ramond-Ramond
fields of Type IIA string theory from an E8 gauge theory in eleven dimensions.
We give some relations between twisted K-theory and M-theory by adapting the
method of Diaconescu-Moore-Witten and Moore-Saulina. In particular, we
construct the twisted K-theory torus which defines the partition function, and
also discuss the problem from the E8 loop group picture, in which the
Dixmier-Douady class is the Neveu-Schwarz field. In the process of doing this,
we encounter some mathematics that is new to the physics literature. In
particular, the eta differential form, which is the generalization of the eta
invariant, arises naturally in this context. We conclude with several open
problems in mathematics and string theory.Comment: 23 pages, latex2e, corrected minor errors and typos in published
versio
Simulation of a semiflexible polymer in a narrow cylindrical pore
The probability that a randomly accelerated particle in two dimensions has
not yet left a simply connected domain after a time decays as
for long times. The same quantity also determines the
confinement free energy per unit length of a
semiflexible polymer in a narrow cylindrical pore with cross section . From simulations of a randomly accelerated particle we estimate the
universal amplitude of for both circular and rectangular cross
sections.Comment: 10 pages, 2 eps figure
Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory
We study D-branes and Ramond-Ramond fields on global orbifolds of Type II
string theory with vanishing H-flux using methods of equivariant K-theory and
K-homology. We illustrate how Bredon equivariant cohomology naturally realizes
stringy orbifold cohomology. We emphasize its role as the correct cohomological
tool which captures known features of the low-energy effective field theory,
and which provides new consistency conditions for fractional D-branes and
Ramond-Ramond fields on orbifolds. We use an equivariant Chern character from
equivariant K-theory to Bredon cohomology to define new Ramond-Ramond couplings
of D-branes which generalize previous examples. We propose a definition for
groups of differential characters associated to equivariant K-theory. We derive
a Dirac quantization rule for Ramond-Ramond fluxes, and study flat
Ramond-Ramond potentials on orbifolds.Comment: 46 pages; v2: typos correcte
On the Topology of Black Hole Event Horizons in Higher Dimensions
In four dimensions the topology of the event horizon of an asymptotically
flat stationary black hole is uniquely determined to be the two-sphere .
We consider the topology of event horizons in higher dimensions. First, we
reconsider Hawking's theorem and show that the integrated Ricci scalar
curvature with respect to the induced metric on the event horizon is positive
also in higher dimensions. Using this and Thurston's geometric types
classification of three-manifolds, we find that the only possible geometric
types of event horizons in five dimensions are and . In
six dimensions we use the requirement that the horizon is cobordant to a
four-sphere (topological censorship), Friedman's classification of topological
four-manifolds and Donaldson's results on smooth four-manifolds, and show that
simply connected event horizons are homeomorphic to or .
We find allowed non-simply connected event horizons and
, and event horizons with finite non-abelian first homotopy
group, whose universal cover is . Finally, following Smale's results we
discuss the classification in dimensions higher than six.Comment: 12 pages, minor edits 27/09/0
- …