149 research outputs found

    Cellular IP<sub>6</sub> Levels Limit HIV Production while Viruses that Cannot Efficiently Package IP<sub>6</sub> Are Attenuated for Infection and Replication

    Get PDF
    Summary: HIV-1 hijacks host proteins to promote infection. Here we show that HIV is also dependent upon the host metabolite inositol hexakisphosphate (IP6) for viral production and primary cell replication. HIV-1 recruits IP6 into virions using two lysine rings in its immature hexamers. Mutation of either ring inhibits IP6 packaging and reduces viral production. Loss of IP6 also results in virions with highly unstable capsids, leading to a profound loss of reverse transcription and cell infection. Replacement of one ring with a hydrophobic isoleucine core restores viral production, but IP6 incorporation and infection remain impaired, consistent with an independent role for IP6 in stable capsid assembly. Genetic knockout of biosynthetic kinases IPMK and IPPK reveals that cellular IP6 availability limits the production of diverse lentiviruses, but in the absence of IP6, HIV-1 packages IP5 without loss of infectivity. Together, these data suggest that IP6 is a critical cofactor for HIV-1 replication

    Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    The second-order Fourier coefficients (υ2_{2}) characterizing the azimuthal distributions of ΄(1S) and ΄(2S) mesons produced in PbPb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV are studied. The ΄mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The collected data set corresponds to an integrated luminosity of 1.7 nb−1^{-1}. The scalar product method is used to extract the υ2_{2} coefficients of the azimuthal distributions. Results are reported for the rapidity range |y| < 2.4, in the transverse momentum interval 0 < pT_{T} < 50 GeV/c, and in three centrality ranges of 10–30%, 30–50% and 50–90%. In contrast to the J/ψ mesons, the measured υ2_{2} values for the ΄ mesons are found to be consistent with zero

    Measurement of prompt D0^{0} and D‟\overline{D}0^{0} meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at root SNN\sqrt{S_{NN}} = 5.02 TeV

    Get PDF
    The strong Coulomb field created in ultrarelativistic heavy ion collisions is expected to produce a rapiditydependent difference (Av2) in the second Fourier coefficient of the azimuthal distribution (elliptic flow, v2) between D0 (uc) and D0 (uc) mesons. Motivated by the search for evidence of this field, the CMS detector at the LHC is used to perform the first measurement of Av2. The rapidity-averaged value is found to be (Av2) = 0.001 ? 0.001 (stat)? 0.003 (syst) in PbPb collisions at ?sNN = 5.02 TeV. In addition, the influence of the collision geometry is explored by measuring the D0 and D0mesons v2 and triangular flow coefficient (v3) as functions of rapidity, transverse momentum (pT), and event centrality (a measure of the overlap of the two Pb nuclei). A clear centrality dependence of prompt D0 meson v2 values is observed, while the v3 is largely independent of centrality. These trends are consistent with expectations of flow driven by the initial-state geometry. ? 2021 The Author. Published by Elsevier B.V. This is an open access article under the CC BY licens

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    Measurement of the Y(1S) pair production cross section and search for resonances decaying to Y(1S)ÎŒâșΌ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF
    The fiducial cross section for Y(1S)pair production in proton-proton collisions at a center-of-mass energy of 13TeVin the region where both Y(1S)mesons have an absolute rapidity below 2.0 is measured to be 79 ± 11 (stat) ±6 (syst) ±3 (B)pbassuming the mesons are produced unpolarized. The last uncertainty corresponds to the uncertainty in the Y(1S)meson dimuon branching fraction. The measurement is performed in the final state with four muons using proton-proton collision data collected in 2016 by the CMS experiment at the LHC, corresponding to an integrated luminosity of 35.9fb−1^{-1}. This process serves as a standard model reference in a search for narrow resonances decaying to Y(1S)ÎŒ+^{+}Ό−^{-} in the same final state. Such a resonance could indicate the existence of a tetraquark that is a bound state of two bquarks and two b̅ antiquarks. The tetraquark search is performed for masses in the vicinity of four times the bottom quark mass, between 17.5 and 19.5GeV, while a generic search for other resonances is performed for masses between 16.5 and 27GeV. No significant excess of events compatible with a narrow resonance is observed in the data. Limits on the production cross section times branching fraction to four muons via an intermediate Y(1S)resonance are set as a function of the resonance mass

    Measurement of the CP-violating phase ϕs_{s} in the B0^{0}s_{s}→J/ψ φ(1020) →ΌâșΌ⁻KâșK⁻ channel in proton-proton collisions at √s = 13 TeV

    Get PDF

    A measurement of the Higgs boson mass in the diphoton decay channel

    Get PDF
    A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb−1^{-1} of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH_{H}=125.78 ±0.26 GeV. This is combined with a measurement of mHalready performed in the H→ZZ→4l{l} decay channel using the same data set, giving mH_{H}=125.46 ±0.16 GeV. This result, when further combined with an earlier measurement of mHusing data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH_{H}=125.38 ±0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    Production of Λâșc_{c} baryons in proton-proton and lead-lead collisions at √S^{S}NN = 5.02 TeV

    Get PDF
    • 

    corecore