3,272 research outputs found

    Boston University School of Medicine Alumni News

    Get PDF
    Newsletter for Boston University School of Medicine alumni

    Type I D-branes in an H-flux and twisted KO-theory

    Full text link
    Witten has argued that charges of Type I D-branes in the presence of an H-flux, take values in twisted KO-theory. We begin with the study of real bundle gerbes and their holonomy. We then introduce the notion of real bundle gerbe KO-theory which we establish is a geometric realization of twisted KO-theory. We examine the relation with twisted K-theory, the Chern character and provide some examples. We conclude with some open problems.Comment: 23 pages, Latex2e, 2 new references adde

    L-infinity algebra connections and applications to String- and Chern-Simons n-transport

    Full text link
    We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L-infinity algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects of their parallel transport and quantization. It is known that over a D-brane the Kalb-Ramond background field of the string restricts to a 2-bundle with connection (a gerbe) which can be seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a U(H)-bundle. We discuss how this phenomenon generalizes from the ordinary central extension U(1) -> U(H) -> PU(H) to higher categorical central extensions, like the String-extension BU(1) -> String(G) -> G. Here the obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n) this obstructs the existence of a String-structure. We discuss how to describe this obstruction problem in terms of Lie n-algebras and their corresponding categorified Cartan-Ehresmann connections. Generalizations even beyond String-extensions are then straightforward. For G = Spin(n) the next step is "Fivebrane structures" whose existence is obstructed by certain generalized Chern-Simons 7-bundles classified by the second Pontrjagin class.Comment: 100 pages, references and clarifications added; correction to section 5.1 and further example to 9.3.1 adde

    Gerbes, M5-Brane Anomalies and E_8 Gauge Theory

    Full text link
    Abelian gerbes and twisted bundles describe the topology of the NS-NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general Ω~E8\tilde\Omega E_8, the central extension of the E_8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form G field strength and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.Comment: 19 page

    An Invitation to Higher Gauge Theory

    Get PDF
    In this easy introduction to higher gauge theory, we describe parallel transport for particles and strings in terms of 2-connections on 2-bundles. Just as ordinary gauge theory involves a gauge group, this generalization involves a gauge '2-group'. We focus on 6 examples. First, every abelian Lie group gives a Lie 2-group; the case of U(1) yields the theory of U(1) gerbes, which play an important role in string theory and multisymplectic geometry. Second, every group representation gives a Lie 2-group; the representation of the Lorentz group on 4d Minkowski spacetime gives the Poincar\'e 2-group, which leads to a spin foam model for Minkowski spacetime. Third, taking the adjoint representation of any Lie group on its own Lie algebra gives a 'tangent 2-group', which serves as a gauge 2-group in 4d BF theory, which has topological gravity as a special case. Fourth, every Lie group has an 'inner automorphism 2-group', which serves as the gauge group in 4d BF theory with cosmological constant term. Fifth, every Lie group has an 'automorphism 2-group', which plays an important role in the theory of nonabelian gerbes. And sixth, every compact simple Lie group gives a 'string 2-group'. We also touch upon higher structures such as the 'gravity 3-group' and the Lie 3-superalgebra that governs 11-dimensional supergravity.Comment: 60 pages, based on lectures at the 2nd School and Workshop on Quantum Gravity and Quantum Geometry at the 2009 Corfu Summer Institut
    • …
    corecore