1,321 research outputs found

    Oscillating Cell Culture Bioreactor

    Get PDF
    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies

    Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering

    Get PDF
    The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue

    The volume of the moduli space of flat connections on a nonorientable 2-manifold

    Full text link
    We compute the Riemannian volume on the moduli space of flat connections on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten's volume formula for these moduli spaces may be derived using Haar measure, and we give a new proof of Witten's volume formula for the moduli space of flat connections on an orientable surface using Haar measure.Comment: 31 pages, LaTeX, manuscript substantially revised. To appear in Communications in Mathematical Physic

    Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    Get PDF
    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue

    Connectivity properties of moment maps on based loop groups

    Full text link
    For a compact, connected, simply-connected Lie group G, the loop group LG is the infinite-dimensional Hilbert Lie group consisting of H^1-Sobolev maps S^1-->G. The geometry of LG and its homogeneous spaces is related to representation theory and has been extensively studied. The space of based loops Omega(G) is an example of a homogeneous space of LGLG and has a natural Hamiltonian T x S^1 action, where T is the maximal torus of G. We study the moment map mu for this action, and in particular prove that its regular level sets are connected. This result is as an infinite-dimensional analogue of a theorem of Atiyah that states that the preimage of a moment map for a Hamiltonian torus action on a compact symplectic manifold is connected. In the finite-dimensional case, this connectivity result is used to prove that the image of the moment map for a compact Hamiltonian T-space is convex. Thus our theorem can also be viewed as a companion result to a theorem of Atiyah and Pressley, which states that the image mu(Omega(G)) is convex. We also show that for the energy functional E, which is the moment map for the S^1 rotation action, each non-empty preimage is connected.Comment: This is the version published by Geometry & Topology on 28 October 200

    Changes in longer consultations for children in general practice

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97524/1/jpc12157.pd

    Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Get PDF
    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment

    Poly(Limonene Thioether) Scaffold for Tissue Engineering

    Get PDF
    A photocurable thiol-ene network polymer, poly(limonene thioether) (PLT32o), is synthesized, characterized, fabricated into tissue engineering scaffolds, and demonstrated in vitro and in vivo. Micromolded PLT32o grids exhibit compliant, elastomeric mechanical behavior similar to grids made of poly(glycerol sebacate) (PGS), an established biomaterial. Multilayered PL32o scaffolds with regular, geometrically defined pore architectures support heart cell seeding and culture in a manner similar to multilayered PGS scaffolds. Subcutaneous implantation of multilayered PLT32o scaffolds with cultured heart cells provides long-term 3D structural support and retains the exogenous cells, whereas PGS scaffolds lose both their structural integrity and the exogenous cells over 31 d in vivo. PLT32o membrane implants retain their dry mass, whereas PGS implants lose 70 percent of their dry mass by day 31. Macrophages are initially recruited to PLT32o and PGS membrane implants but are no longer present by day 31. Facile synthesis and processing in combination with the capability to support heart cells in vitro and in vivo suggest that PLT32o can offer advantages for tissue engineering applications where prolonged in vivo maintenance of 3D structural integrity and elastomeric mechanical behavior are required.United States. National Institutes of Health (R01-HL107503
    • …
    corecore