248 research outputs found

    Bulloch Times (Statesboro News-Statesboro Eagle)

    Get PDF
    https://digitalcommons.georgiasouthern.edu/bulloch-news-issues/3109/thumbnail.jp

    Resource Management and Prioritization in an Embedded Linux System

    Get PDF
    This master thesis tackles the problem of limited computing resources on a camera that is executing computing applications together with image acquisition and streaming. The thesis was carried out at Axis Communications in cooperation with the Department of Automatic Control at Lund University. The problem of limited resources on an Axis camera is handled by a two part solution where a resource manager (RM) distributes the available resources and services can adapt their service level (SL) in order to finish their jobs on time. The solution is based on game theory, where services are players, varying their service levels in order to get a good match between given resources and their computing requirements. This service level adaptation scheme is implemented for the streaming service on the camera and for some test services, performing mathematical operations. The resource manager is incorporated into systemd, and uses cgroups [16] to distribute the computing capacity. The experimental results show that the resource manager is fully operational and capable of managing and prioritizing resources as intended on the embedded system

    Carbon capture from combined heat and power plants – Impact on the supply and cost of electricity and district heating in cities

    Get PDF
    The capture and storage of biogenic CO2 emissions from large point sources, such as biomass-combusting combined heat and power (CHP) plants, can contribute to climate change mitigation and provide carbon-negative electricity while supplying district heating in urban areas. This work investigates the impact of retrofitting CO2 capture processes to CHP plants in a city energy system context. An energy system optimization model is applied to a case study of the city V\ue4ster\ue5s, Sweden, with scenarios involving two existing CHP plants in the city, retrofitted with either a heat-driven (MEA) or an electricity-driven (HPC) carbon capture process. The results show that the CHP plants might be retrofitted with either option without significantly impacting the district heating system operation or the marginal costs of electricity and district heating in the city. The MEA process mainly causes a reduction in district heating output (up to 30% decrease on an annual basis), which can be offset by heat recovery from the capture unit. The electrified HPC process does not impact the CHP plant steam cycle but implies increased import of electricity to the city (up to 44% increase annually) compared to a reference scenario

    Integration of CCS in Combined Heat and Power Plants in a City Energy System

    Get PDF
    Carbon dioxide removal (CDR) is expected to play an important role in climate change mitigation. Bio-energy carbon capture and storage (BECCS) is a form of CDR discussed in the Swedish district heating sector where large-scale point sources of biogenic CO2 emissions are found. This work investigates the retrofit of CO2 capture processes to combined heat and power (CHP) plants in a city energy system context, to examine the impact on CHP plant energy output and city energy balances, and the cost-optimal way to integrate and operate the capture processes. An energy system optimization model is applied to a case study of the city V\ue4ster\ue5s, Sweden, with scenarios involving the retrofit to two existing CHP plants in the city of either a heat-driven (MEA) or electricity-driven (HPC) carbon capture process. The results show that it is possible to retrofit the CHP plants with either of these options without significantly impacting the district heating system operation or the marginal costs of electricity and district heating. The MEA process mainly causes a reduction in district heating output (up to 30% decrease on an annual basis), which can be partly offset with heat recovery from the capture unit, or increased utilization of the CHP plants (if possible). The electrified HPC process does not impact the CHP plant steam cycle, but implies increased import of electricity to the city (up to 44% increase) compared to a reference scenario

    A techno-economic assessment of CO2 capture in biomass and waste-fired combined heat and power plants – A Swedish case study

    Get PDF
    The need to reduce global CO2 emissions is urgent and might be facilitated by carbon capture and storage (CCS) technologies. Sweden has a goal to reach net-zero emissions by 2045. Negative emissions and bio-CCS (BECCS) have been proposed as important strategies to reach this target at the lowest cost. The Swedish district heating sector constitutes a large potential for BECCS, with biogenic point sources of CO2 in the form of combined heat and power (CHP) plants that burn biomass residues from the forest industry. This study analyzes the potential of CO2 capture in 110 existing Swedish biomass or waste-fired CHP plants. Process models of CHP steam cycles give the impacts of absorption-based CCS on heat and electricity production, while a district heating system unit commitment model gives the impact on plant operation and the potential for CO2 capture. The results provide a cost for carbon capture and transport to the nearest harbor by truck: up to 19.3 MtCO2/year could be captured at a cost in the range of 45–125 €/tCO2, corresponding to around 40% of the total fossil fuel-based Swedish CO2 emissions. This would be sufficient to meet a proposed target of 3–10 Mt/year of BECCS by 2045

    A Case Study of the Potential for CCS in Swedish Combined Heat and Power Plants

    Get PDF
    The global need to reduce anthropogenic CO2 emissions is imminent and might be facilitated by carbon capture and storage (CCS) technologies. Sweden has a goal to reach net-zero emissions by 2045, where negative emissions – and bio-CCS (BECCS) in particular - have been proposed as an important strategy to reach this target at the lowest cost. The Swedish district heating sector constitutes a large potential for BECCS since there is a large number of relatively large biogenic point sources of CO2 in the form of combined heat and power (CHP) plants burning biomass residues from the forest industry. This study provides a multi-level estimation of the impact and potential of CO2 capture and negative emissions in 110 existing Swedish biomass or waste-fired CHP plants, located in 78 local district heating systems. Process models of CHP steam cycles give the impact of absorption-based CCS integration on CHP plant heat and electricity production. The propagation of the plant-level impact to the unit commitment of CHP plants in district heating systems is modelled, and the potential for CO2 capture in each system is estimated. The results indicate that 45-70% of nominal steam cycle district heating generation is retained when integrating carbon capture, depending on the power-to-heat ratio; although the reduced heat output can be moderated by sacrificing electricity generation. In the district heating system context, CCS integration can lead to increased utilization and fuel use of CHP plants, in synergy with increased CO2 capture, but might also lead to greater need for peak heat and/or electricity generation. The total CO2 captured from the 45 CHP plants with modeled CO2 emissions exceeding 150 kton/year could be sufficient to meet a proposed target of 3-10 Mton/year of BECCS by Year 2045

    Modeling the development of a carbon capture and transportation infrastructure for Swedish industry

    Get PDF
    This work presents and applies a mixed integer programming (MIP) optimization model that minimizes the net present costs for CO2 capture and storage (CCS) systems for cases with defined emissions costs and/or capture targets. The model covers capture from existing large point sources of CO2 emissions in Sweden, liquefaction, intermediate storage and transportation using trucks to hubs on the coast, followed by ship transport to a storage location (excluding storage cost). The results show that the capture and transportation infrastructure, in terms of both the sites chosen for capture and the associated transportation setup, differs depending on whether the system is incentivized to capture biogenic or fossil CO2, or both. Waste-fired combined heat and power (CHP) plants are only chosen for capture at scale when biogenic capture targets and fossil emissions costs are combined, since the emissions from these sites comprise a combination of biogenic and fossil CO2. The value for the system in mitigating the costs from fossil CO2 emissions exceeds the increased cost of BECCS at waste-fired CHPs compared to larger pulp mills given the fossil emissions cost development assumed in this work. Although the cost for capture and liquefaction dominates the total cost of the CCS system, it is not the only factor determining the choice of sites for capture. Proximity to transport hubs with short offshore transportation distances to the final storage location is also an important factor. For the transportation infrastructure, it is shown that the cost for ships is the main cost driver

    Large-Scale Implementation of Bioenergy With Carbon Capture and Storage in the Swedish Pulp and Paper Industry Involving Biomass Supply at the Regional Level

    Get PDF
    Bioenergy with carbon capture and storage (BECCS) has been identified as a possible major contributor to efforts to reach ambitious climate targets through the provision of negative emissions–offsetting residual fossil emissions in “hard-to-abate” sectors and accomplishing net-negative emissions. The pulp and paper industry is the single largest consumer of biomass in Sweden, with many large point sources of biogenic CO2 emissions that could be captured. This work investigates the biomass supply required for large-scale implementation of BECCS in the pulp and paper industry. Logging residues are considered as a fuel to supply the additional energy demand imposed by the capture plant, and the potential of these residues is evaluated in a case study that includes four pulp and paper mills located in regions of Sweden with different conditions for biomass supply. Two of the mills are located in southern Sweden, where there is strong competition for logging residues from the heating sector, and two of the mills are located in northern Sweden, where the competition is weaker. We show that implementing carbon capture at the four pulp and paper mills using regional logging residues to supply the additional heat demand required by the capture process (the reboiler heat demand) has the potential to capture around 4.6\ua0Mt CO2/year. The results also show that the fuel share of the capture cost, i.e., the cost to supply the reboiler heat demand with regional logging residues, is 22–30\ua0€/tCO2 captured, where the lower value corresponds to regions with weaker competition for logging residues (in this study, northern Sweden). In regions that have competition for logging residues, the possibility to increase the regional supply of logging residues to fuel the capture process while maintaining mill production output is limited, which in turn limits the possibilities to generate negative emissions via BECCS. In contrast, in regions with a low level of competition and strong availability of logging residues, there is an additional potential for logging residues to cover the additional heat demand required for CCS implementation

    Flexibility provision by combined heat and power plants – An evaluation of benefits from a plant and system perspective

    Get PDF
    Variable renewable electricity generation is likely to constitute a large share of future electricity systems. In such electricity systems, the cost and resource efficiency can be improved by employing strategies to manage variations. This work investigates combined heat and power (CHP) plant flexibility as a variation management strategy in an energy system context, considering the operation and cost-competitiveness of CHP plants. An energy system optimization model with detailed representation of CHP plant flexibility is applied, covering the electricity and district heating sectors in one Swedish electricity price area. The results show that investments in CHP plants are dimensioned based on the demand for district heating rather than electricity. In the system studied, this implies that CHP plant capacity is small relative to electricity system variations, and variation management using CHP plants has a weak impact on the total system cost of supplying electricity and district heating. However, flexibility measures increase CHP plant competitiveness in scenarios with low system flexibility (assuming low availability of hydropower or no thermal energy storage) although investments in CHP capacity are sensitive to fuel cost. It is found that while district heating is the dominant CHP product (constituting 50%–90% of the annual CHP energy output), the dispatchable electricity supply has a high value and comprises around 60% of the annual CHP plant revenue. In all scenarios, operational flexibility of the boiler is more valuable than a flexible steam cycle power-to-heat ratio
    • …
    corecore