25 research outputs found

    Thermal components for 1.8 K space cryogenics

    Get PDF
    Work of the summer 1986 is summarized in three areas. First, conceptual design of a laboratory system for heat exchanger evaluation in conjunction with the operation of a thermally activated fountain effect pump (FEP) is presented. Second, Knudsen effect evaluation of fine porous media useful for the pressurization plug which forms the main component of the FEP is described. Third, proof-of-principle test of the lab system selected on the basis of the evaluation is summarized

    Cryogenic-coolant He4-superconductor dynamic and static interactions

    Get PDF
    A composite superconducting material (NbTi-Cu) was evaluated with emphasis on post quench solid cooling interaction regimes. The quasi-steady runs confirm the existence of a thermodynamic limiting thickness for insulating coatings. Two distinctly different post quench regimes of coated composites are shown to relate to the limiting thickness. Only one regime,, from quench onset to the peak value, revealed favorable coolant states, in particular in He2. Transient recovery shows favorable recovery times from this post quench regime (not drastically different from bare conductors) for both single coated specimens and a coated conductor bundle

    Thermomechanical force application

    Get PDF
    The present work conducted in Summer 1987 continues investigations on Thermal Components for 1.8 K Space Cryogenics (Grant NAG 1-412 of 1986). The topics addressed are plug characterization efforts in a small pore size regime of sintered metal plugs, characterization in the nonlinear regime, temperature profiles in a heat supply unit for a fountain effect pump and modeling efforts

    Utilization of FEP energetics

    Get PDF
    The research and development work on Fountain Effect Pump Systems (FEP systems) has been of interest in the competition between mechanical pumps for He II and FEP units. The latter do not have moving parts. In the course of the work, the energetics have been addressed using one part of a simple four-changes-of-state cycle. One option is the FEP ideal change of state at constant chemical potential (mu). The other option is the two-state sequence mu-P with a d mu=0 state change followed by an isobar. Questions of pump behavior, of flow rate response to temperature difference at the hot end, and related questions of thermodynamic cycle completion and heat transfer have been addressed. Porous media data obtained elucidate differences between vapor-liquid phase separation (VLPS) and Zero Net Mass Transfer (ZNMF)
    corecore