16 research outputs found

    A bioinformatic approach to identify new potential resistance relevant amino acid substitutions (AAS) in HIV-1 protease (H1P)

    Get PDF
    Background: Predicting potential drug resistance mutations are important when evaluating protein-drug interactions of potential new antiviral drugs. Here we used evolutionary data from the Retroviral Aspartyl Protease (RVP) family (PF00077, 54135 sequences) to estimate plausible PI resistant-associated AAS within the H1P. Methods: Using a Hidden Markov Model (HMM) of the RVP family probabilities were extracted for each possible AAS limited to the 38 positions reported in the IAS drug resistance listing for H1P (December 2008 version). The HMM is a dynamic Bayesian network, modeling sequences of amino acids. The HMM is based on curated and representative sequences from the RVP family. Results: Theoretically 760 AAS (20 × 38) are possible for the 38 evaluated positions within the H1P. Of these, the RVP-HMM detected a total of 229 AAS (30.1%) with a probability above 1/20 (0.05). Of the 229 AAS, 51 (70%) were among the 73 AAS included in the IAS listing as PI-resistant mutations, leaving 178 AAS with P > 0.05 as evolutionary plausible. Conclusion: Based on exploration of the RVP family by HMM, 70% of the established PI-resistant associated AAS could be predicted to occur. Additional 178 AAS was identified as evolutionary plausible and potentially could allow for drug-resistance. In conclusion, we provide a probability landscape of plausible/unfavorable AAS based on inherited structure through evolution and genetic distance, which could prove useful for future drug design

    Impact of CD4 and CD8 dynamics and viral rebounds on loss of virological control in HIV controllers

    Get PDF
    Objective: HIV controllers (HICs) spontaneously maintain HIV viral replication at low level without antiretroviral therapy (ART), a small number of whom will eventually lose this ability to control HIV viremia. The objective was to identify factors associated with loss of virological control. Methods: HICs were identified in COHERE on the basis of \ue2\u89\ua55 consecutive viral loads (VL) \ue2\u89\ua4500 copies/mL over \ue2\u89\ua51 year whilst ART-naive, with the last VL \ue2\u89\ua4500 copies/mL measured \ue2\u89\ua55 years after HIV diagnosis. Loss of virological control was defined as 2 consecutive VL >2000 copies/mL. Duration of HIV control was described using cumulative incidence method, considering loss of virological control, ART initiation and death during virological control as competing outcomes. Factors associated with loss of virological control were identified using Cox models. CD4 and CD8 dynamics were described using mixed-effect linear models. Results: We identified 1067 HICs; 86 lost virological control, 293 initiated ART, and 13 died during virological control. Six years after confirmation of HIC status, the probability of losing virological control, initiating ART and dying were 13%, 37%, and 2%. Current lower CD4/CD8 ratio and a history of transient viral rebounds were associated with an increased risk of losing virological control. CD4 declined and CD8 increased before loss of virological control, and before viral rebounds. Discussion: Expansion of CD8 and decline of CD4 during HIV control may result from repeated low-level viremia. Our findings suggest that in addition to superinfection, other mechanisms, such as low grade viral replication, can lead to loss of virological control in HICs

    Cell-Permeating α-Ketoglutarate Derivatives Alleviate Pseudohypoxia in Succinate Dehydrogenase-Deficient Cells▿

    No full text
    Succinate dehydrogenase (SDH) and fumarate hydratase (FH) are components of the tricarboxylic acid (TCA) cycle and tumor suppressors. Loss of SDH or FH induces pseudohypoxia, a major tumor-supporting event, which is the activation of hypoxia-inducible factor (HIF) under normoxia. In SDH- or FH-deficient cells, HIF activation is due to HIF1α stabilization by succinate or fumarate, respectively, either of which, when in excess, inhibits HIFα prolyl hydroxylase (PHD). To reactivate PHD, we focused on its substrate, α-ketoglutarate. We designed and synthesized cell-permeating α-ketoglutarate derivatives, which build up rapidly and preferentially in cells with a dysfunctional TCA cycle. This study shows that succinate- or fumarate-mediated inhibition of PHD is competitive and is reversed by pharmacologically elevating intracellular α-ketoglutarate. Introduction of α-ketoglutarate derivatives restores normal PHD activity and HIF1α levels to SDH-suppressed cells, indicating new therapy possibilities for the cancers associated with TCA cycle dysfunction

    Gait Disturbances are Associated with Increased Cognitive Impairment and Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort

    No full text
    Background: Gait analysis with accelerometers is a relatively inexpensive and easy to use method to potentially support clinical diagnoses of Alzheimer's disease and other dementias. It is not clear, however, which gait features are most informative and how these measures relate to Alzheimer's disease pathology. Objective: In this study, we tested if calculated features of gait 1) differ between cognitively normal subjects (CN), mild cognitive impairment (MCI) patients, and dementia patients, 2) are correlated with cerebrospinal fluid (CSF) biomarkers related to Alzheimer's disease, and 3) predict cognitive decline. Methods: Gait was measured using tri-axial accelerometers attached to the fifth lumbar vertebra (L5) in 58 CN, 58 MCI, and 26 dementia participants, while performing a walk and dual task. Ten gait features were calculated from the vertical L5 accelerations, following principal component analysis clustered in four domains, namely pace, rhythm, time variability, and length variability. Cognitive decline over time was measured using MMSE, and CSF biomarkers were available in a sub-group. Results: Linear mixed models showed that dementia patients had lower pace scores than MCI patients and CN subjects (p < 0.05). In addition, we found associations between the rhythm domain and CSF-tau, especially in the dual task. Gait was not associated with CSF Aβ42 levels and cognitive decline over time as measured with the MMSE. Conclusion: These findings suggest that gait-particularly measures related to pace and rhythm-are altered in dementia and have a direct link with measures of neurodegeneration
    corecore