43 research outputs found

    Single‐cell omics: Overview, analysis, and application in biomedical science

    Get PDF
    Single-cell sequencing methods provide the highest resolution insight into cellular heterogeneity. Owing to their rapid growth and decreasing cost, they are now widely accessible to scientists worldwide. Single-cell technologies enable analysis of a large number of cells, making them powerful tools to characterise rare cell types and refine our understanding of diverse cell states. Moreover, single-cell application in biomedical sciences helps to unravel mechanisms related to disease pathogenesis and outcome. In this Viewpoint, we briefly describe existing single-cell methods (genomics, transcriptomics, epigenomics, proteomics, and mulitomics), comment on available analysis tools, and give examples of method applications in the biomedical field

    Modeling clonal hematopoiesis in umbilical cord blood cells by CRISPR/Cas9

    Get PDF
    To investigate clonal hematopoiesis associated gene mutations in vitro and to unravel the direct impact on the human stem and progenitor cell (HSPC) compartment, we targeted healthy, young hematopoietic progenitor cells, derived from umbilical cord blood samples, with CRISPR/Cas9 technology. Site-specific mutations were introduced in defined regions of DNMT3A, TET2, and ASXL1 in CD34(+) progenitor cells that were subsequently analyzed in short-term as well as long-term in vitro culture assays to assess self-renewal and differentiation capacities. Colony-forming unit (CFU) assays revealed enhanced self-renewal of TET2 mutated (TET2(mut)) cells, whereas ASXL1(mut) as well as DNMT3A(mut) cells did not reveal significant changes in short-term culture. Strikingly, enhanced colony formation could be detected in long-term culture experiments in all mutants, indicating increased self-renewal capacities. While we could also demonstrate preferential clonal expansion of distinct cell clones for all mutants, the clonal composition after long-term culture revealed a mutation-specific impact on HSPCs. Thus, by using primary umbilical cord blood cells, we were able to investigate epigenetic driver mutations without confounding factors like age or a complex mutational landscape, and our findings provide evidence for a direct impact of clonal hematopoiesis-associated mutations on self-renewal and clonal composition of human stem and progenitor cells

    Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia

    Get PDF
    In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome

    Reply to S. Masuda

    No full text

    Reply to I.H.I.M. Hollink et al

    No full text
    corecore