32 research outputs found

    Determination of the Defining Boundary in Nuclear Magnetic Resonance Diffusion Experiments

    Full text link
    While nuclear magnetic resonance diffusion experiments are widely used to resolve structures confining the diffusion process, it has been elusive whether they can exactly reveal these structures. This question is closely related to X-ray scattering and to Kac's "hear the drum" problem. Although the shape of the drum is not "hearable", we show that the confining boundary of closed pores can indeed be detected using modified Stejskal-Tanner magnetic field gradients that preserve the phase information and enable imaging of the average pore in a porous medium with a largely increased signal-to-noise ratio.Comment: 13 pages, 2 figure

    NeXtQSM -- A complete deep learning pipeline for data-consistent quantitative susceptibility mapping trained with hybrid data

    Full text link
    Deep learning based Quantitative Susceptibility Mapping (QSM) has shown great potential in recent years, obtaining similar results to established non-learning approaches. Many current deep learning approaches are not data consistent, require in vivo training data or solve the QSM problem in consecutive steps resulting in the propagation of errors. Here we aim to overcome these limitations and developed a framework to solve the QSM processing steps jointly. We developed a new hybrid training data generation method that enables the end-to-end training for solving background field correction and dipole inversion in a data-consistent fashion using a variational network that combines the QSM model term and a learned regularizer. We demonstrate that NeXtQSM overcomes the limitations of previous deep learning methods. NeXtQSM offers a new deep learning based pipeline for computing quantitative susceptibility maps that integrates each processing step into the training and provides results that are robust and fast

    Methodological considerations on tract-based spatial statistics (TBSS)

    Get PDF
    Having gained a tremendous amount of popularity since its introduction in 2006, tract-based spatial statistics (TBSS) can now be considered as the standard approach for voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data. Aiming to improve the sensitivity, objectivity, and interpretability of multi-subject DTI studies, TBSS includes a skeletonization step that alleviates residual image misalignment and obviates the need for data smoothing. Although TBSS represents an elegant and user-friendly framework that tackles numerous concerns existing in conventional VBA methods, it has limitations of its own, some of which have already been detailed in recent literature. In this work, we present general methodological considerations on TBSS and report on pitfalls that have not been described previously. In particular, we have identified specific assumptions of TBSS that may not be satisfied under typical conditions. Moreover, we demonstrate that the existence of such violations can severely affect the reliability of TBSS results. With TBSS being used increasingly, it is of paramount importance to acquaint TBSS users with these concerns, such that a well-informed decision can be made as to whether and how to pursue a TBSS analysis. Finally, in addition to raising awareness by providing our new insights, we provide constructive suggestions that could improve the validity and increase the impact of TBSS drastically

    3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T

    Get PDF
    ObjectiveFunctional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task.Methods18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task.ResultsSpatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an “offline replay” of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation.ConclusionThese findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases

    On the Vanishing of the t-term in the Short-Time Expansion of the Diffusion Coefficient for Oscillating Gradients in Diffusion NMR

    No full text
    Nuclear magnetic resonance (NMR) diffusion measurements can be used to probe porous structures or biological tissues by means of the random motion of water molecules. The short-time expansion of the diffusion coefficient in powers of t1/2, where t is the diffusion time related to the duration of the diffusion-weighting magnetic field gradient profile, is universally connected to structural parameters of the boundaries restricting the diffusive motion. The t1/2-term is proportional to the surface to volume ratio. The t-term is related to permeability and curvature. The short time expansion can be measured with two approaches in NMR-based diffusion experiments: First, by the use of diffusion encodings of short total duration and, second, by application of oscillating gradients of long total duration. For oscillating gradients, the inverse of the oscillation frequency becomes the relevant time scale. The purpose of this manuscript is to show that the oscillating gradient approach is blind to the t-term. On the one hand, this prevents fitting of permeability and curvature measures from this term. On the other hand, the t-term does not bias the determination of the t1/2-term in experiments

    Flow-compensated diffusion encoding in MRI for improved liver metastasis detection.

    No full text
    Magnetic resonance (MR) diffusion-weighted imaging (DWI) is often used to detect focal liver lesions (FLLs), though DWI image quality can be limited in the left liver lobe owing to the pulsatile motion of the nearby heart. Flow-compensated (FloCo) diffusion encoding has been shown to reduce this pulsation artifact. The purpose of this prospective study was to intra-individually compare DWI of the liver acquired with conventional monopolar and FloCo diffusion encoding for assessing metastatic FLLs in non-cirrhotic patients. Forty patients with known or suspected multiple metastatic FLLs were included and measured at 1.5 T field strength with a conventional (monopolar) and a FloCo diffusion encoding EPI sequence (single refocused; b-values, 50 and 800 s/mm2). Two board-certified radiologists analyzed the DWI images independently. They issued Likert-scale ratings (1 = worst, 5 = best) for pulsation artifact severity and counted the difference of lesions visible at b = 800 s/mm² separately for small and large FLLs (i.e., 1 cm) and separately for left and right liver lobe. Differences between the two diffusion encodings were assessed with the Wilcoxon signed-rank test. Both readers found a reduction in pulsation artifact in the liver with FloCo encoding (p < 0.001 for both liver lobes). More small lesions were detected with FloCo diffusion encoding in both liver lobes (left lobe: six and seven additional lesions by readers 1 and 2, respectively; right lobe: five and seven additional lesions for readers 1 and 2, respectively). Both readers found one additional large lesion in the left liver lobe. Thus, flow-compensated diffusion encoding appears more effective than monopolar diffusion encoding for the detection of liver metastases

    Mask-Adapted Background Field Removal for Artifact Reduction in Quantitative Susceptibility Mapping of the Prostate

    No full text
    We propose an alternative processing method for quantitative susceptibility mapping of the prostate that reduces artifacts and enables better visibility and quantification of calcifications and other lesions. Three-dimensional gradient-echo magnetic resonance data were obtained from 26 patients at 3 T who previously received a planning computed tomography of the prostate. Phase images were unwrapped using Laplacian-based phase unwrapping. The background field was removed with the V-SHARP method using tissue masks for the entire abdomen (Method 1) and masks that excluded bone and the rectum (Method 2). Susceptibility maps were calculated with the iLSQR method. The quality of susceptibility maps was assessed by one radiologist and two physicists who rated the data for visibility of lesions and data quality on a scale from 1 (poor) to 4 (good). The readers rated susceptibility maps computed with Method 2 to be, on average, better for visibility of lesions with a score of 2.9 ± 1.1 and image quality with a score of 2.8 ± 0.8 compared with maps computed with Method 1 (2.4 ± 1.2/2.3 ± 1.0). Regarding strong artifacts, these could be removed using adapted masks, and the susceptibility values seemed less biased by the artifacts. Thus, using an adapted mask for background field removal when calculating susceptibility maps of the prostate from phase data reduces artifacts and improves visibility of lesions

    Early Detection of Malignant Transformation in Resected WHO II Low-Grade Glioma Using Diffusion Tensor-Derived Quantitative Measures.

    No full text
    Here, we retrospectively investigate the value of voxel-wisely plotted diffusion tensor-derived (DTI) axial, radial and mean diffusivity for the early detection of malignant transformation (MT) in WHO II glioma compared to contrast-enhanced images.Forty-seven patients underwent brain magnetic resonance imaging follow-up between 2006-2014 after gross-tumor resection of intra-axial WHO II glioma. Axial/Mean/Radial diffusivity maps (AD/MD/RD) were generated from DTI data. ADmin/MDmin/RDmin values were quantified within tumor regions-of-interest generated by two independent readers including tumor contrast-to-noise (CNR). Sensitivity/specificity and area-under-the-curve (AUC) were calculated using receiver-operating-characteristic analysis. Inter-reader agreement was assessed (Cohen's kappa).Eighteen patients demonstrated malignant transformation (MT) confirmed in 8/18 by histopathology and in 10/18 through imaging follow-up. Twelve of 18 patients (66.6%) with MT showed diffusion restriction timely coincidental with contrast-enhancement (CE). In the remaining six patients (33.3%), the diffusion restriction preceded the CE. The mean gain in detection time using DTI was (0.8±0.5 years, p = 0.028). Compared to MDmin and RDmin, ROC-analysis showed best diagnostic value for ADmin (sensitivity/specificity 94.94%/89.7%, AUC 0.96; p<0.0001) to detect MT. CNR was highest for AD (1.83±0.14), compared to MD (1.31±0.19; p<0.003) and RD (0.90±0.23; p<0.0001). Cohen's Kappa was 0.77 for ADmin, 0.71 for MDmin and 0.65 for RDmin (p<0.0001, respectively).MT is detectable at the same time point or earlier compared to T1w-CE by diffusion restriction in diffusion-tensor-derived maps. AD demonstrated highest sensitivity/specificity/tumor-contrast compared to radial or mean diffusivity (= apparent diffusion coefficient) to detect MT
    corecore