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Objective: Functional magnetic resonance imaging (fMRI) visualizes brain 
structures at increasingly higher resolution and better signal-to-noise ratio (SNR) 
as field strength increases. Yet, mapping the blood oxygen level dependent 
(BOLD) response to distinct neuronal processes continues to be  challenging. 
Here, we  investigated the characteristics of 7  T-fMRI compared to 3  T-fMRI in 
the human brain beyond the effect of increased SNR and verified the benefits 
of 7  T-fMRI in the detection of tiny, highly specific modulations of functional 
connectivity in the resting state following a motor task.

Methods: 18 healthy volunteers underwent two resting state and a stimulus 
driven measurement using a finger tapping motor task at 3 and 7  T, respectively. 
The SNR for each field strength was adjusted by targeted voxel size variation to 
minimize the effect of SNR on the field strength specific outcome. Spatial and 
temporal characteristics of resting state ICA, network graphs, and motor task 
related activated areas were compared. Finally, a graph theoretical approach was 
used to detect resting state modulation subsequent to a simple motor task.

Results: Spatial extensions of resting state ICA and motor task related activated 
areas were consistent between field strengths, but temporal characteristics 
varied, indicating that 7  T achieved a higher functional specificity of the BOLD 
response than 3  T-fMRI. Following the motor task, only 7  T-fMRI enabled the 
detection of highly specific connectivity modulations representing an “offline 
replay” of previous motor activation. Modulated connections of the motor cortex 
were directly linked to brain regions associated with memory consolidation.

Conclusion: These findings reveal how memory processing is initiated even after 
simple motor tasks, and that it begins earlier than previously shown. Thus, the 
superior capability of 7  T-fMRI to detect subtle functional dynamics promises to 
improve diagnostics and therapeutic assessment of neurological diseases.
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1. Introduction

Magnetic-resonance-imaging (MRI), the gold standard in medical 
research and clinical diagnostics, generates high resolution images 
that help diagnose brain injuries, such as aneurysms, stroke, and 
traumatic brain injury, but also tumors and nervous system disease. 
With the recent clinical approval of ultra-high field 7 Tesla (7 T) 
magnets in 2017, hopes are arising that this technological advance 
would significantly improve static MRI diagnostics but also functional 
MRI (fMRI). Specifically, because fMRI detects a blood-oxygen-level-
dependent (BOLD) signal coupled to underlying neuronal activity, it 
could in principle be applied toward mapping and diagnosing human 
brain function in a range of nervous system indications. In clinical 
context, monitoring resting-state inter-regional neural activity 
correlations (rs-fMRI) has several advantages over task-fMRI 
(mapping static neural activity following a specific motor or sensory 
task): rs-fMRI data acquisition is less complex, less time consuming 
and does not need patient’s cooperation. However, the implication of 
rs-fMRI in clinical practice is currently limited to pre-surgical 
planning, largely due to the increased complexity required for 
mapping functional connectivity and analyzing single subjects 
(O'Connor and Zeffiro, 2019).

In principle, a stronger magnetic field that improves upon signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR), enables 
imaging at higher spatial resolution with sufficient SNR and, thus the 
visualization of finer structures. Accordingly, BOLD 7 T-fMRI allows 
detection of increased BOLD contrast due to a shortened T2* 
relaxation (the decay of transverse magnetization; an important image 
contrast determinant; Yacoub et al., 2001; Peters et al., 2007), with 
higher spatial specificity (the intra-vascular signal contribution from 
draining veins is reduced; Gati et al., 1997; Duong et al., 2003).

On the other hand, higher field strengths result in increased 
physiological noise that dominates the temporal SNR (tSNR), 
especially at larger voxel sizes. However, at high image SNR, which is 
determined by larger voxel sizes, the tSNR reaches a plateau, limiting 
the benefits of increased tSNR to high spatial resolutions (Triantafyllou 
et al., 2005). In this study, the voxel sizes were chosen such that images 
at both field strengths were dominated by thermal rather than 
physiological noise and exhibited a tSNR below the plateau.

However, 7 T-fMRI also has disadvantages such as increased 
inhomogeneity in the static (B0) magnetic field, which can cause 
susceptibility-induced distortions that lead to degradation of image 
quality in a variety of applications. In addition, the shortened T2* 
relaxation can result in increased blurring in EPI readouts.

Since the motor cortex is less influenced by imaging-associated 
technical artefacts such as reduced transmit field strength, given its 
superficial location and proximity to the detection coil, motor tasks are 
frequently used to investigate the field strength influence on neuronal 
activation in healthy subjects (Schafer et al., 2008; van der Zwaag et al., 

2009) and tumor patients (Beisteiner et al., 2011). Indeed, at higher field 
strength, increased BOLD signal, higher amplitudes, and average t-scores 
as well as increased activated volume have been reported. However, 
whether a 7 T-fMRI analysis of the resting-state connectivity in and of 
itself, would have potential diagnostic capability, remains largely 
unexplored. Earlier studies reported that 7 T, but not 3 T, by significantly 
higher temporal SNR ratio, improves upon spatial specificity in 
connected areas. This improvement enabled detection of functional 
connectivity (FC) that differed in the ventral tegmental area of patients 
with depression relative to healthy controls (Hale et al., 2010; Morris 
et al., 2019). However, assessing whether a motor task directly impacts 
on subsequent resting-state connectivity is beyond the detection limit of 
3 T-fMRI, and have not yet been demonstrated for 7 T-fMRI.

Through the use of invasive electrophysiological methods, the 
existence of ongoing neuronal firing immediately after a motor task 
has been demonstrated in animals (Gulati et al., 2014; Ramanathan 
et al., 2015; Yu et al., 2021). This so-called neuronal “offline replay” is 
presumed to be directly linked to memory encoding, as suppression 
of the offline replay results in poorer memory performance (Yu et al., 
2021). Recently, learning-related offline replay in the human brain was 
reported in a pilot trial in which participants were implanted with 
intracortical microelectrode arrays (Eichenlaub et al., 2020), providing 
proof of principle that early memory encoding in the resting-state can 
be detected.

Focusing on the human visual cortex, that is known to be easily 
and strongly excitable, this principle concept of detecting neuronal 
replay by (3 T) fMRI was very recently shown using task-related 
stimuli with various inter-stimulus intervals. Frequency spectra 
analysis of probabilistic patterns in pre- and post-task resting-states 
revealed differences at frequencies indicative for the fastest and slowest 
stimulus presentation speed, pointing indirectly toward a replay of 
activation patterns in the visual cortex (Wittkuhn and Schuck, 2021). 
In addition to persisting activation patterns, the “replay” of task-
related neuronal activity is thought to contribute also to the 
reconfiguration of memory-related functional connectivity across the 
brain (Albert et  al., 2009a; Tambini et  al., 2010). For 3 T-fMRI, 
functional replay was demonstrated during slow-wave-sleep in 
humans via cue-induced replay of event-related brain activation after 
declarative memory-encoding tasks (Rasch et al., 2007; Berkers et al., 
2018). Occurrence and strength, especially of hippocampal replay 
patterns, were correlated with subsequent memory performance 
(Tambini and Davachi, 2013; Schapiro et al., 2018). Similarly, two 
human 3 T-fMRI studies investigated whether FC-modulation in the 
resting-state was associated with a previous declarative learning task 
(Risius et al., 2018; Deantoni et al., 2021). Although these studies 
detected a few modulated connections in predefined regions activated 
during encoding, these were not correlated with memory performance 
and not controlled for the natural variation of the participant’s resting-
state between consecutive measurements. In contrast, for a procedural 
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memory task such as sequential finger-tapping, 3 T-fMRI did not 
detect a replay pattern during sleep (Rasch et  al., 2007) or in the 
resting-state. Of note, sleep improved the movement speed of a motor 
task, but not its accuracy (Rasch et al., 2007; Ramanathan et al., 2015). 
Furthermore, analysis of the resting-state revealed enhanced 
connectivity in executive and cerebellar networks after motor learning 
but not after motor movement in and of itself (Jiang et al., 2004; Albert 
et  al., 2009b). Therefore, whether it is possible to detect a replay 
response coupled to a preceding motor task remains unknown.

In this study, we  set out to investigate the characteristics of 
7 T-fMRI compared to 3 T-fMRI in the human brain beyond the well-
described effect of increased SNR. For this purpose, we adjusted the 
SNR between both field strength through a targeted variation of the 
voxel size. As a result, no differences in spatial sensitivity of the 
functional response were found between the two field strengths. 
Therefore, we sought to examine whether 7 T offers a higher BOLD 
specificity for examining motor task-driven neuronal events affecting 
the connectivity in the subsequent resting-state. This connectivity 
modulation would be a functional correlate of the neuronal offline 
replay following a finger-tapping motor task.

2. Methods

2.1. Participants

A total of 18 (eight female, 10 male) healthy right-handed 
participants aged 19–55 years (average 37 years) were recruited. 11 
participants had previous experience in being MRI scanned. Exclusion 
criteria included occurrence of any current or past form neurological/
psychiatric diseases or having any contradictions to fMRI scanning. 
Ethical approval (189-15B) was provided by the local ethics committee 
of FAU, and informed consent was obtained from all participants. The 
study adhered to the tenets of the Declaration of Helsinki.

2.2. Study design

To compare the effects of high magnetic fields on functional MRI, 
we conducted a paired study design. Each participant underwent one 
3 T and one 7 T measurement, respectively. The measurement order 
was balanced between all participants. The time between both 
measurements ranged from 1 to 6 weeks. Each fMRI session started 
and ended with resting-state measurements. During sessions, 
participants either remained at rest (rest-group) or executed an active 
right-hand finger-tapping motor task (ft-group). ft- and rest-group 
allocations were randomized under the constraint of balanced gender, 
age, measurement order, and previous MR experience (Figure 1).

2.3. fMRI stimulation paradigm

The motor stimulation was a right hand sequential tap of each 
digit with the thumb lasting 14 s. This finger-tapping stimulation was 
repeated seven times with baseline intervals of 14 s and additional 14 s 
baseline before the first finger-tapping. Thus, the duration of the whole 
stimulation sequence was 3 min 30 s. The participants were instructed 
to start and stop the finger-tapping by voice commands.

2.4. Acquisition

MRI scans were performed on Siemens Magnetoms TERRA (7 T) 
and TRIO (3 T) using 32 channel head coils. Prior to the functional 
scans an anatomical scan and a gre-field mapping was performed. The 
following setting were used for MP2RAGE at 7 T: TR = 4,500 ms, 
TE = 2.27 ms, GRAPPA 3, 0.8 mm isotropic resolution, 
TI = 3,200/1,000 ms, flip angle = 4°, TA = 9:15 min; and MPRAGE at 3 T: 
TR = 1.9 s, TE = 2.52 ms, TI = 900 ms, flip angle = 9°, 1 mm isotropic 
resolution, GRAPPA 2, TA = 4:26 min. Gre-field mapping was done at 
7 T using a flash sequence (TR = 4.4 ms, TE = 1.02, 3.06 ms, 3.9 mm 
isotropic resolution, flip angle = 10°, GRAPPA 2, TA = 12 s) and at 3 T 
using the Siemens product sequence (TR = 650 ms, TE = 4.92, 7.38 ms, 
2 mm isotropic resolution, flip angle = 60°, TA = 2:27 min). The 
anatomical scan was solely for clinical purposes on request of the 
participants. To acquire functional MRI scans, we used gradient echo-
planar imaging sequences (GE-EPI) with following settings: GRAPPA 
(three with 48 reference lines), TR = 2 s, TE = 21.0 ms (7 T) and 29.6 ms 
(3 T), flip angle = 69° (7 T) and 73° (3 T), acquisition matrix = 168 × 168 
(7 T) and 126 × 126 (3 T), no. of slices = 84 (7 T) and 72 (3 T), 
FOV = 252 mm × 252 mm, resolution = 1.5 mm3 (7 T) and 2 mm3 (3 T) 
isotrop. The resolution was adjusted to achieve comparable signal-to-
noise ratios for 7 and 3 T: since it can be assumed that noise increases 
at least linear with B0 (Pohmann et al., 2016), the resolution ratio was 
chosen to match the inverse field strength ratio, i.e., 1.53/2.03 ~ 3/7. Both 
resting-state measurements acquired 300 volumes each (total time 
10 min) and the sequence between both resting-state, either with or 
without finger-tapping, contained 105 volumes (total time 3 min 30 s).

2.5. Preprocessing of functional MRI data

After discarding the first two volumes to avoid MR saturation 
effects, fMRI data were distortion corrected using the acquired field 
map, corrected for slice scan time (cubic spline interpolation 
considering the scan order table) and motion (trilinear detection and 
sinc interpolation), and were subsequently smoothed spatially (3D 
Gaussian filter with FWHM 4 mm). The temporal dimension of the 
stimulus driven BOLD data was smoothed using a GLM-Fourier-
Filter with 2 cycles and that of the resting-state data was band pass 
filtered with a frequency cut off between 0.009 and 0.08 Hz. All 
preprocessing steps except the band pass filtering of the resting-state 
data were performed using Brainvoyager QX (Brain Innovation, 
Maastricht, Netherlands; V2.8.2.2523). Band-pass filtering and all 
further analysis, if not stated otherwise, was done with MagnAn 
(Biocom GbR, Uttenreuth, Germany, V2.5), an IDL application (Exelis 
Visual Information Solutions Inc., a subsidiary of Harris Corporation, 
Melbourne, FL, United  States, V8.5) designed for complex image 
processing and analysis with emphasis on (functional) MR imaging.

2.6. Individual brain atlas registration and 
brain region segmentation

To identify anatomical brain regions, we developed a modified 
Montreal Neurological Institute (MNI) probabilistic brain atlas that 
was a combination of the Harvard-Oxford-cortical-and-subcortical 
atlas including white matter and ventricles (Desikan et al., 2006), the 
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fsl-oxford-thalamic-connectivity atlas (Behrens et al., 2003), and the 
SUIT cerebellum atlas (Diedrichsen et  al., 2009). Additionally, a 
skilled neuroanatomist manually divided the brainstem into medulla, 
pons, left and right tegmentum, and left and right tectum. In total, this 
atlas spanned 166 brain regions plus white matter and ventricle 
regions. We used the first volume of each functional MRI sequence 
(with the skull stripped manually) as an anatomical reference, which 
we registered to the linear ICMB152 T2 template in MNI space using 
a diffeomorphic registration algorithm provided by Advanced 
Normalization Tools (ANTS; Avants et al., 2011; http://stnava.github.
io/ANTs/). Subsequently, the resulting individual transformation 
matrices and fields were applied backward on each volume of the 
probabilistic atlas, i.e., each brain region. The median-filtered (kernel 
3) maximum probability maps in the individual space of each 
participant were then used to define brain regions for further analysis. 
We focused on grey matter brain regions for resting-state data analysis, 
leaving white matter and ventricles as additional ROIs. Finger-tapping 
stimulation data were analyzed using brain regions covering both grey 
and white matter but excluding ventricles.

2.7. Quality metrics

The preprocessed first resting-state scan (rs1) was used to 
determine the following quality metrics:

Signal-to-noise ratio (SNR; Magnotta et  al., 2006): The mean 
intensity within the gray matter divided by the standard deviation of 
the values outside the skull. Higher values are better.

Contrast-to-noise ratio (CNR; Magnotta et  al., 2006): The 
difference of gray matter and white matter mean intensity values 
divided by the standard deviation of the values outside the skull. 
Higher values are better.

Foreground to background energy ratio (FBER; Shehzad et al., 
2015): The variance of intensity values inside the brain divided by the 
variance of intensity values outside the skull. Higher values are better.

Entropy focus criterion (EFC; Atkinson et al., 1997): The Shannon 
entropy of volume voxel intensities proportional to the maximum 
possible entropy for a same sized volume. This quality metric indicates 
ghosting and head motion induced blurring. Lower values are better.

Temporal signal-to-noise ratio (tSNR; Murphy et al., 2007): Voxel 
wise calculated mean signal over time divided by the standard 
deviation over time, yielding tSNR volume maps. Higher values 
are better.

zDVARS (Afyouni and Nichols, 2018): DVARS is the standard 
deviation of the temporal derivative of the data, calculated as the 
spatial standard deviation of the temporal difference image. For better 
inter-cohort comparisons, DVARS was scaled relative to its temporal 
standard deviation and autocorrelation. Lower values are better.

Median distance index (MDI; Cox, 1996): The mean distance 
(1-spearman’s rho) between each time point’s volume and the median 
volume. Lower values are better.

Global correlation (Gcorr; Saad et  al., 2013): The average 
correlation of all pairs of voxel time courses inside the brain indicating 
global data fluctuations. Values closer to 0 are better.

Grey matter and white matter regions were defined using the 
corresponding ROIs resulting from the individual brain atlas 
registration. Background regions were automatically defined as the 
largest contiguous region of all voxels outside the brain tissue mask 
with lower intensity than the 5% quantile within the brain mask. Thus, 
skull and muscles outside the brain tissue mask are reliably eliminated.

2.8. Analysis of finger-tapping stimulation 
data

Preprocessed finger-tapping stimulation data underwent a 
classical General Linear Model (GLM) analysis with the hemodynamic 
response function (HRF) convolved with the boxcar stimulation 
function as only predictor. This first step was done in Brainvoyager 
QX, further analysis of the resulting Statistical Parametric Maps 

FIGURE 1

Experimental design. 18 healthy participants were measured twice, once in a 7  T and once in a 3  T Siemens Magnetom Scanner in a randomized order. 
Each session consisted of two resting state scans (rs1 and rs2) with either rest or a simple finger-tapping motor task in between. In the active motor 
task, participants tapped each finger sequentially for 14  s, followed by 14  s of rest, for a total of seven times after an initial 14  s rest (starting and stopping 
upon voice commands).
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(SPMs) was performed in MagnAn. To identify significantly activated 
voxels, the individual SPMs were thresholded using the Benjamini-
Yekutieli version of the False Discovery Rate (Benjamini and Yekutieli, 
2001; BY-FDR, q = 0.05, n = 748 time points) which considers a 
dependency between multiple tests. Since neighboring voxels 
influence each other this version seems to be the most appropriate to 
correct for voxel-wise statistical tests. Significantly activated voxels 
were assigned to distinct brain regions by multiplying the thresholded 
SPMs with the corresponding maximum probability map. The 
proportion of participants per group that showed any activated voxels 
within a certain brain region was defined as the activation probability 
of that brain region. Under consideration of the different voxel 
resolutions for 7 T and 3 T measurements, the number of activated 
voxels was expressed as activated volumes (mm3) per brain region and 
measurement. For further analysis only those regions were taken into 
account which exceeded an activation volume larger than 15 mm3 and 
had, under this constraint, an activation probability of 100% either in 
the 7 T or in the 3 T group (in total 43 regions, including bilateral 
counterparts, see Supplementary Table 1). The average time course of 
activated voxels within these brain regions was extracted and all 
stimulation periods (“ON” in the boxcar function) including five 
baseline time points (“OFF” in the boxcar function) before and after 
the stimulation period were averaged. BOLD response was expressed 
as percent BOLD signal change (ΔR/R) using the average of the three 
inner time points of the baseline before the stimulation period as 
baseline reference R. Using this BOLD response amplitude, the 
following parameters were calculated to characterize the stimulation 
response: amplitude (peak) height (PH), time to peak (PT), amplitude 
width (PW), and amplitude symmetry (PS). For detailed description, 
see Supplementary Figure 1.

Additionally to those regional parameters we  calculated the 
temporal contrast-to-noise ratio tCNR (Geissler et  al., 2007) per 
activated voxel. tCNR was calculated from ΔSCNR/σt-noise, with ΔSCNR 
defined as the following difference:

( )
( )

“ ”

“ ”

Mean value of all time points within the stimulation period ON

mean value of all time points within the baseline period OFF−

σt-noise is the standard deviation of the difference between the 
original and smoothed signals indicating the non-task-related 
variability over time. Smoothing was performed using a Savitzky–
Golay filter with a polynomial order of 2 and length 5. Voxel-wise 
tCNR was averaged over activated voxels for each brain region.

2.9. ICA analysis of resting-state data and 
identification of resting-state networks

Prior to further resting-state analysis, the average time courses of 
white matter and ventricles was regressed out of the preprocessed and 
band pass filtered resting-state data. White matter and ventricle masks 
were defined from the individual brain region segmentation as 
described above.

For ICA analysis, the whole rs1 scans of all participants were 
registered to the T2 MNI template by repetitively applying the 
transformation matrices calculated for the individual brain atlas 
registration. Group ICA analysis of concatenated time series was 
performed separately for 7 and 3 T scans using the FastICA algorithm 

(Calhoun et al., 2001) in the “Group ICA of fMRI Toolbox” (GIFT 
v1.3g; https://trendscenter.org/software/). 20 independent 
components were calculated. For group comparison (7 vs. 3 T) only 
the aggregate components were used.

We identified common resting-state networks (RSN) by 
comparing the 20 GIFT 3 T group ICA aggregate components with 
two different public available template sets provided in the MNI152 
space. The first template,1 published by Smith et al. (2009), is based on 
images of 36 healthy subjects, who were scanned with a 3 T Siemens 
TRIO Magnetom and analyzed using GIFT group ICA with 20 
components. Except for the length of the measurement (6 min instead 
10 min in our study), this was the same protocol as we used. Therefore, 
this template (further on called Smith Template) was most suitable to 
serve as a reference for the identification of RSNs within our datasets. 
The second template was provided by the Stanford University and is 
referred to as Stanford Template.2 The authors (Shirer et al., 2012) 
measured 15 subjects for 10 min using a 3 T GE Scanner and 
subsequently calculated a MELODIC group ICA with 30 components. 
14 RSNS were identified by visual inspection and were arbitrarily 
binarized to obtain in total 90 distinct functional ROIs. Two 
inconsistencies between both templates had to be solved: (1) Due to 
the higher number of ICA components to create the Stanford template, 
the DMN was separated into a ventral and a dorsal part. Those two 
RSNs were combined to one. (2) The Smith Template contained three 
networks, named executive control and left and right frontoparietal 
networks, which visually match the anterior Saliency and left and right 
executive control network of the Stanford Template. Those matching 
RSNs were considered as corresponding templates and named 
according to the Stanford template anterior Saliency (aSN, matching 
the executive control of the Smith template), left and right executive 
control (LECN and RECN, respectively, matching the left and right 
frontoparietal network of the Smith template).

Similarity between Smith templates and 3 T ICA components was 
assessed by spatial correlation of the z score values of all voxels within 
the brain. Stanford templates were compared with the binarized ICA 
aggregate components (z score > 2, corresponding to p < 0.05, 
uncorrected) by spatial overlap with reference to the template and 
additionally the similarity was determined using the Jacquard index. 
RSNs were automatically identified by the maximum similarity 
converging in both directions (best match of all ICA components to a 
specific template and best match of all templates to specific ICA 
component) for either the Smith or the Stanford template. 
Subsequently, the 7 T RSNs were identified by spatial cross correlation 
of the 20 7 T ICA components to the previously defined 3 T RSNs. All 
automatically identified RSNs were confirmed by visual inspection.

2.10. Graph-theoretical resting-state 
analysis using multi seed correlation

According to the ICA analysis, the residuals of the preprocessed 
data after regression of white matter and ventricle time courses were 
used. Graph-theoretical resting-state analysis describes brain regions 

1 https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/

2 http://greiciuslab.stanford.edu/resources
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as nodes and focusses on the connections between each pair of brain 
region, called edges in network terminology. To assess the functional 
connectivity between the brain regions we used a multi-seed-region 
approach (MSRA) introduced by Kreitz et  al. (2018). Briefly, a 
predefined seed region was placed automatically in the center of mass 
of each brain region as determined by atlas registration and region 
segmentation described above. Seed regions were spheres with 
approximately 7.5 mm diameter. Due to the different voxel resolution 
of 7 and 3 T measurements odd kernel sizes to achieve closest 
diameters were five voxel for 7 T (7.5 mm diameter) and three voxel 
for 3 T (6 mm diameter). The average time course of each seed region 
was correlated with every voxel time course within the brain and the 
resulting correlation maps were thresholded using BY-FDR (q = 0.05, 
n = 298 time points) to determine significantly correlating voxels. In 
opposite to the predefined seed regions the location of those target 
voxels per brain region was determined purely data driven, thereby 
enhancing sensitivity of the connectivity between pairs of nodes 
(Kreitz et al., 2018). The average Pearson’s correlation r of all target 
voxels per brain region was used to define the connectivity strength to 
the respective seed region. This procedure was repeated for every 
brain region resulting in an asymmetric correlation matrix per resting-
state scan. For further analysis, Pearson’s r values were transformed to 
Fisher’s z-values to provide normal distribution.

2.11. Resting-state quality measures

Quality of resting-state connectivity was assessed via the 
reasonable assumption that homotopic brain regions in healthy 
subjects are stronger connected than heterotopic, independently of 
their anatomical distance (Salvador et al., 2005). For each bilateral 
brain region, the normalized rank of the connectivity strength to its 
counterpart in the opposite hemisphere within all its connections was 
determined. Subsequently, a linear fit over the ranks of all brain 
regions in dependence on the anatomical distance was calculated. 
Group comparisons between 7 and 3 T resting-state matrices were 
conducted with the fitted rank for the mean anatomical distance and 
the slope of the linear fit. The first indicates the general dominance of 
bilateral interhemispheric connectivity and the latter the dependency 
on anatomical distance.

Another measure for resting-state data quality is the specificity for 
distinct RSNs. In theory, two core regions of the default mode network 
should correlate stronger than on of these regions to a core region of 
another, preferably task positive network (Grandjean et al., 2020). 
Here, we  calculated the correlation ratio of the anterior cingulate 
cortex to the middle cingulum (part of the central axis of the default 
mode network) and to the middle frontal gyrus (core region of the 
executive control network). Correlation of all hemispherical 
combinations were averaged (left to left, right to right, left to right, and 
right to left). Higher values indicate higher specificity.

2.12. Topological comparison of 
resting-state graphs

For topological comparison, the 7% strongest connections of 
the average matrices per group (7 and 3 T) were extracted to create 
average networks of the same density. Network communities were 

detected using a heuristic method that is based on modularity 
optimization proposed by Blondel et al. (2008). The nodes within 
these communities are more strongly connected to each other than 
to nodes outside the community. Networks were visualized in 
AMIRA (Thermo Fisher Scientific Inc., Waltham, MA, 
United States, V5.4.2) using a force-based algorithm (Kamada and 
Kawai, 1989).

Topological components that represent subnetworks of altered 
connectivity strength between the 7 T rs1 and the 3 T rs1 scan were 
determined using an adaptation of the network-based statistics 
(NBS; Zalesky et al., 2010). NBS is a method to control the family-
wise error rate after mass univariate t-tests performed at every 
single network edge. NBS exploits the interconnected extent of 
univariate significant different edges by permutation of subject 
specific networks between experimental groups. In a paired design, 
we  introduced an additional paired control group in order to 
control for general effects of repeated measurements (pNBS; Kreitz 
et al., 2018). Here, we used an unpublished control data set of 11 
healthy subjects (seven females, age 25–63) who were measured 
twice with an interval of 2 days on the same Siemens TRIO 
Magnetom Scanner (GE-EPI, TR: 3 s, TE: 30 ms, flip angle: 90°, 
matrix size 128 × 128 pixel, pixel resolution: 1.5 mm × 1.5 mm, 36 
slices, slice thickness: 3 mm, slice gap: 0.75 mm, 200 volumes). 
Preprocessing and MSRA analysis were performed as described 
above. This control group was used to define an α-value where 
almost no significantly different connections between the repeated 
measurements occurred. To minimize the effect of single outliers, 
we  calculated the 99% quantile of the mass univariate paired 
t-statistics p values. The resulting α-value was used to identify a set 
of supra-threshold connections (control component). The same 
threshold was applied to the paired t-statistics p values of the 
experimental group (i.e., paired rs1 scans with 7 and 3 T), and all 
remaining connected components equal or smaller to the control 
component were eliminated. Finally, the family-wise-error (pFWE) 
was controlled by 10,000 randomized permutations of pairs 
between experimental and control group (for details, see Kreitz 
et  al., 2018). The α-value ensures that the observed differences 
correspond dominantly to the experimental conditions, in this case 
the field strength, whereas the pFWE value indicates the probability 
that the observed component is not random. NBS and pNBS are 
weak controls, which only allows rejecting the global null 
hypothesis. Thus, no single connections but rather the whole 
component mirrors the resting-state modulations under the 
experimental conditions.

2.13. Variability and reproducibility of 
resting-state correlation matrices

Variability of resting-state graphs between subjects was assessed 
via pairwise spatial correlation of the underlying MSRA matrices, 
resulting in a correlation matrix which represents the similarity of 
each subject with all other subjects. Reproducibility of two subsequent 
resting-state measurements was determined by spatial correlation of 
the MSRA matrices of rs1 and rs2 separately for each subject. Here, 
only subjects without finger-tapping stimulation between both 
resting-state measurements were taken into account. Correlation 
values were transformed into Fisher’s z-values.
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2.14. Analysis of resting-state modulations

Since we expect only tiny modulations in distinct brain regions, 
pNBS was not powerful enough to detect more modulations between 
rs1 and rs2 in the finger-tapping group compared to the rest-group. 
However, reinforced by the observed reduced variability between 
subjects in rs2 (see the section 3), the classical NBS (α = 0.05, 10,000 
permutations) had enough power to detect significant components in 
rs2 that distinguish between groups. This first step of the resting-state 
modulation analysis was completely data driven and was applied to 
rs1 and rs2, respectively.

The dominant regions within the significant component resulting 
from the rs2 group comparison, i.e., those with the most modulated 
connections, were used for further analysis. This second step should 
identify specific connections that are significantly modulated due to 
the finger-tapping task performed between both resting-state 
measurements. For this, we used the region specific seed correlation 
maps (SCM) calculated during the MSRA procedure for rs1 and rs2 in 
both groups. The MSRA algorithm ensured that the seed regions were 
subject- and measurement-specific placed according to their relative 
position within the brain region of interest and sized. Only voxels with 
significant correlation of their time courses to the seed region time 
course as identified using BY-FDR were taken into account. SCMs of 
the selected regions were registered to the MNI space by applying the 
transformation resulting from the diffeomorphic registration of their 
corresponding anatomical references (see the section “2.6”).

Subsequently, a voxel-wise paired t-test between rs1 and rs2 was 
performed separately for each group. The resulting statistical t-maps 
was cluster enhanced using threshold-free cluster enhancement 
(TFCE with parameter settings signal height H = 2 and cluster extent 
E = 0.05; Smith and Nichols, 2009) and corrected for multiple 
comparison using permutation testing. Relying on the assumption 
that significance of a contiguous cluster is more likely to be  true 
positive than that of a single voxel, TFCE aims to enhance areas of 
t-values that exhibit some spatial contiguity without the need for a 
hard cluster-forming thresholding. The resulting modified values are 
normalized back to the range of the original t-values. Randomized 
permutation testing was performed with 1,000 repetitions. To avoid 
outliers and therefore improve statistical power the 99.9th percentile 
of all voxel t-values within the brain instead of the maximum t-value 
was used to create the “Null”-distribution. The 95% quantile of this 
distribution represented the rejection condition and the normalized 
TFCE image was thresholded with this t-value to obtain significant 
clusters. The combination of both methods provided enhanced 
sensitivity (less false negative, reduced Type II error) of statistical tests 
on behalf of acceptable costs in specificity (more false positive, 
enhanced Type I error). Binarized significant clusters of the ft- and the 
rest-group were combined by a logical OR. This resulted in a binary 
mask that marked all voxels that are significant in either of both 
groups. This mask was applied to each subject’s rs2–rs1 difference map 
and, after brain region segmentation using the maximum probability 
map of the above-described 4D probability atlas in MNI space, the 
average difference per subject and brain region was extracted.

To obtain specific connectivity modulations due to finger-tapping, 
the rest-group serves as a control and region specific average rs2-rs1 
differences were tested for significance between ft- and rest-group 
using a homoscedastic t-test and Benjamini-Hochberg FDR 
(Benjamini and Hochberg, 1995; BH-FDR, q = 0.05) to correct for 

multiple comparison. The resulting connections were visualized as 
network graphs with brain regions as nodes and the modified 
connections of the seed regions as edges using AMIRA (Thermo 
Fisher Scientific Inc., Waltham, MA, United States, V5.4.2).

2.15. Statistics

In addition to network based statistics (NBS and pNBS) and voxel 
wise paired t-test including TFCE, as described above, the following 
statistical approaches were used:

Principle Component Analysis was performed to separate 3 and 
7 T measurements by quality metrics (n = 18) and by BOLD response 
parameters including tCNR (n = 9). To search for group specific BOLD 
response parameter effects, we performed a mixed repeated measure 
ANOVA with replication using field strength as within factor and 
brain regions as between factor (n = 9). Group effects of the activation 
probability were assessed using two factor ANOVA without replication 
with factors field strength and brain regions. Variability main effects 
between measurements were examined by one factor repeated 
measure ANOVA using Fisher’s z correlation values of all subject pairs 
as a measure of similarity (n = 36). Significant ANOVA effects and 
interactions were then tested using Tukey HSD. Direct two group 
comparisons were made using Student’s t-test, either paired (3 vs. 7 T, 
rs1 vs. rs2) or homoscedastic (ft vs. rest). Multiple tests were 
appropriately corrected using permutation tests (NBS, pNBS, voxel 
wise t-statistic, description see above), Benjamini-Yekutieli FDR 
(q = 0.05, detection of significant BOLD response and resting-state 
correlation in volumes with voxel wise statistic), Benjamini-Hochberg 
FDR (q = 0.05, detection of significant group differences in region 
specific statistics) and Bonferroni (correction of ANOVA follow up 
Tukey HSD statistics). Significance level was p < 0.05.

3. Results

3.1. 7 and 3  T functional data can 
be differentiated mainly by spatial quality 
metrics

To evaluate the measurement quality for each session, we assessed 
the first resting-state rs1 across all participants for spatial (average 
brain volume over time) and temporal (voxel-wise time-courses) 
quality metrics. To evaluate the spatial data quality, we determined the 
SNR, the CNR between grey and white matter, the foreground to 
background energy ratio (FBER), and the entropy focus criterion 
(EFC). Conversely, we  assessed temporal data quality using the 
temporal SNR (tSNR), the standardized per-image standard deviation 
of the temporal derivative (zDVARS), the median distance index 
(MDI), and finally the global correlation (Gcorr). For details, see the 
section 2.

Overall, those metrics generated high quality fingerprints 
(Figure 2A) that, with the exception of Gcorr, differed significantly 
between 7 and 3 T (Figures 2A,B, paired t-test, p < 0.05). When we did 
a principal component (PC) analysis using all metrics, we found an 
excellent separation of field strengths along the first PC (Figure 2C) 
with highest absolute loadings for CNR and EFC in the spatial 
dimension. Both measures are indicative of the technical quality of the 
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MR measurements, but have no influence on the functional data 
processing. EFC is a measure of image blur due to ghosting and head 
motion. Since DVARS, another measure of motion artefacts, did not 
differ between the 3 and 7 T measurements, it is very likely that the 
higher EFC of the 7 T measurements is caused by increased ghosting. 
The higher CNR at 7 T is a measure of the improved performance of 
the 7 T scanner, which is not directly related to SNR and voxel 
resolution. In contrast, temporal metrics did not contribute before the 
third PC and did not account for field-strength dependent group 
separation (Figure  2C; Table  1), which means that, under the 
constraint of adjusted resolutions to compensate for field 

strength-dependent SNRs, temporal data quality is less influenced by 
higher field strength than spatial image quality. We found that whole 
brain average SNR and tSNR were even higher for 3 T. As expected, 
the highest tSNR of the 3 T measurements was located within the 
cortex, which was closer to the f-MRI head coil. In contrast, the tSNR 
of 7 T measurements was instead more evenly distributed throughout 
the brain (Supplementary Figure  2). Taken together, the higher 
cortical tSNR at 3 T did not survive the correction for multiple 
comparison, whereas subcortical regions and the cerebellum showed 
a significantly higher tSNR at 7 T (Figure 2D, paired t-test, corrected, 
p < 0.05).

FIGURE 2

Quality metrics of the first resting-state scan rs1. (A) Fingerprints of average quality metrics for 7 and 3  T (solid line spatial, dashed line temporal metric). 
The better value of 7 or 3  T is set to 1.0 and the corresponding one is given proportionally. (B) Mean quality measures with standard deviation in 
brackets (n  =  18). Significance was determined by paired two tailed t-test (*p  <  0.05). (C) Principle component analysis (PCA) of quality metrics. 
Projections of single subject measurements on the first and second PC (left) and the second and third PC (right). Percent eigenvalue and metrics with 
absolute loadings above 0.5 on the respective PC are given in brackets of axis titles. For detailed loadings of the PCs, see Table 1. (D) Spatial distribution 
of significant differences in tSNR between 7 and 3  T (n  =  18, two tailed paired t-test with permutation correction, p  <  0.05).
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3.2. Motor task activation patterns were 
consistent between field strengths, but 
temporal responses varied

Next, we evaluated how field strength influences a BOLD response 
stimulated by a motor task (n = 9, paired design). As an indicator for 
the region’s activation sensitivity and specificity, we expressed the 
motor task-induced activation per brain region as percentage of 
participants, the so-called activation probability 
(Supplementary Figure  3). In further analysis, we  only included 
regions in which the activation probability was 100% in at least one 
hemisphere and with one field strength. The resulting 43 brain regions 
(21 bilateral and 1 middle) and their corresponding activation 
probabilities are shown in Supplementary Table 1. Within this motor 
response pattern, the average activation probability was significantly 
higher with 7  T compared to 3 T (two factor ANOVA without 
replication, F = 2.441, p = 0.002), indicating a higher functional 
sensitivity at 7 T. To assess the functional specificity, we selected a set 
of 10 occipital cortical regions that are very unlikely to be involved in 
motor responses and calculated the average activation probability 
(AP) of these regions to define a false positive rate. The inverse false 
positive rate, here 1-AP, is a measure of specificity. In relation to 3 T 
(1-AP = 37%), functional specificity at 7 T (1-AP = 64%) was 
significantly enhanced by 73% (two factor ANOVA without 
replication, F = 11.055, p = 0.012, Figure 3F).

Although spatial quality was higher for 7 T, we  found highly 
similar spatial distributions of activation patterns for 7 and 3 T, 
especially for contralateral sensorimotor areas (Figure 3A, see also 
centroid distances of activated voxels in Supplementary Table  2). 
However, the average BOLD signal response profile revealed 
significantly higher (F = 334.955, p = 8.0 × 10−59, Bonferroni corrected, 
repeated measure ANOVA) and broader (F = 7.048, p = 0.040) 
response amplitudes with a tendency toward a longer decreasing 
phase (higher amplitude symmetry), but no difference in time to peak 
after stimulation onset (Figure  3B; Supplementary Table  1). 
Additionally, we  calculated the temporal contrast-to-noise ratio 
(tCNR) per region and found a significant main effect for field 
strength (7 > 3 T, F = 489.46, p = 0.000). To identify parameters that 
contribute the most to a field strength-dependent measurement 

separation, we performed a PCA using all BOLD response parameters 
and the tCNR, each averaged per subject over all brain regions. 
Subject’s measurements were separated according to field strength 
along the first and the second PC. The first two PCs explained 65% of 
the variability between all subjects and loadings above 0.5 were tCNR 
on the first, and amplitude symmetry and time to peak on the second 
PC (Figure 3C). However, we found that the activated volume did not 
contribute to the data variability or separation between measurements 
according to field strength (Table 2).

When we investigated region-specific effects of field strength on 
brain regions using ANOVA, we did not find any interactions except 
for amplitude height (F = 2.009, p = 0.0004) and tCNR (F = 3.081, 
p = 1.47 × 10−8). Here, the contralateral primary motor (M1 left) and 
somatosensory (S1 left) regions showed significantly enhanced 
response amplitudes (Tukey HSD, corrected, p < 0.05; Figure 3D). To 
verify, that this observation indicate an enhanced specificity of the 
BOLD response, we compared the ratios of the contralateral response 
amplitude (specific response to the right hand motor stimulation) to 
their ipsilateral counterpart (non-specific response). For both regions, 
we  found enhanced ratios with 7 T compared to 3 T fMRI, again 
indicating higher functional specificity at 7 T (Figure  3F). 
Furthermore, the tCNR was enhanced in the left S1 and M1 regions 
(Figure 3E), and additionally in bilateral secondary motor cortex and 
the deep nuclei of the cerebellum (data not shown, Tukey HSD, 
corrected, p < 0.05).

3.3. 7T resting-state networks showed 
higher specificity explicitly in cognitive and 
sensorimotor networks

To analyze resting-state data, we applied GIFT, a MATLAB tool 
for performing independent component analysis (ICA) on fMRI data, 
on the rs1 period (n = 18, paired design) for both field strengths. 
Specifically, we checked for common resting-state networks (RSN) 
and differences in spatial distribution and network level functional 
connectivity strength between 7 and 3 T. To identify RSNs, 
we compared the similarity of 20 ICA aggregate components derived 
from the GIFT group ICA to two sets of publicly available templates 
(Smith et  al., 2009; Shirer et  al., 2012; Supplementary Figure  4, 
Supplementary Results).

In all, we detected nine RSNs as follows: the default mode (DMN), 
anterior Saliency (aSN), sensorimotor (SMN), left and right executive 
control (LECN and RECN, respectively), auditory (AuN), and three 
visual networks: medial or primary (pVN), lateral (lVN), and occipital 
(oVN; Figure 4A). When we cross-correlated the corresponding ICA 
components to assess the similarity of the RSNs between 7 and 3 T, 
we found that the similarity was highest for the DMN (r = 0.85) and 
lowest for the SMN (r = 0.54) with a median value for all nine RSNs of 
r = 0.611 (Figure 4B). Next, we determined the global spatial extension 
of the thresholded RSN aggregate components (z score > 2, 
corresponding to p < 0.05, uncorrected) and the average z score as an 
indicator for network level FC strength. We  found that spatial 
extension and FC were identical at 7 and 3 T for DMN, pVN, and aSN 
(Figures 4C,D). Those networks, especially the DMN, are considered 
task free networks associated with the basic function of the resting 
brain. However, the more cognitive executive control (LECN, RECN) 
and higher visual (lVN, oVN) networks and the SMN showed smaller 

TABLE 1 PCA of quality metrics.

Eigenvalue (%) 38.8 60.4 76.8 87.9 95.9

Principle 
component

PC1 PC2 PC3 PC4 PC5

Temporal

tSNR −0.288 0.258 −0.572 −0.087 0.479

zDVARS −0.212 0.449 −0.148 −0.441 −0.691

MDI −0.376 −0.271 0.451 0.268 −0.235

Gcorr 0.067 −0.100 −0.566 0.704 −0.402

Spatial

SNR −0.272 0.557 0.279 0.330 0.082

CNR 0.509 0.195 0.030 −0.041 −0.214

FBER 0.304 0.543 0.219 0.332 0.150

EFC 0.548 −0.070 0.011 −0.100 0.029

Loadings of the first five principle components (PC). Loadings above 0.5 for each PC are 
highlighted in grey. Only PC1 contriute to the separation between 7 T and 3 T 
measurements.
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FIGURE 3

BOLD response to a finger-tapping motor task. (A) Neurological view of average statistical parametric maps, thresholded for significant activation using 
false discovery rate according to Benjamini and Yekutieli (2001) (BY-FDR, q  =  0.05, n  =  748 time points), acquired for each subject with 7  T (top) and 3  T 
(bottom), respectively (n  =  9). Centroid MNI coordinates of activated areas per region are given in Supplementary Table 2. (B) Fingerprint plot (left) of 
normalized average BOLD response parameters (n  =  9). Significance between 7 and 3  T was determined by mixed repeated measure ANOVA without 
replication for AP and with replication for all other parameters using field strength as within factor and brain regions as between factor (*p  <  0.05, 
Bonferroni corrected). (C) PCA of average BOLD response parameters per subject (n  =  9). Projections of single subjects on the first and second PC are 
shown. Percent eigenvalue and the BOLD response parameters with absolute loading above 0.5 on the respective PC are given in brackets in axis titles. 
For detailed loadings of the PCs, see Table 2. (D) Average BOLD response profiles of left primary motor cortex (M1), primary somatosensory cortex (S1), 
and middle frontal gyrus (MFG) and (E) the corresponding temporal contrast-to-noise ratios (tCNR). Squares mark the stimulation time period. Arrows 
indicate biphasic amplitude shape. +p  <  0.05, Tukey HSD with Bonferroni correction, *p  <  0.05, two tailed paired t-test with Bonferroni correction. 
(F) Specificity measures for 7  T in relation to 3  T task-related fMRI. *p  <  0.05, mixed repeated measure ANOVA without replication. AP, activation 
probability; AV, activated volume; PH, amplitude (peak) height; PS, amplitude symmetry; PT, time to peak; and PW, amplitude width (see 
Supplementary Figure 3).
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spatial extension and enhanced average FC at 7 T (Figures 4C,D), that 
might indicate higher spatial specificity of these RSNs at 7 T.

3.4. 7  T resting-state graphs showed higher 
specificity of the underlying functional 
connectivity

Compared to the ICA-derived RSNs, graph-theoretical FC 
analysis generates deeper insights into the brain-wide information 
flow. For this purpose, we used the multi-seed-region approach MSRA 
(Kreitz et al., 2018) to create subject specific correlation matrices for 
rs1 using 158 brain regions (n = 18, paired design).

We assumed that a strong homotopic connectivity in healthy 
subjects would be  largely independent of its anatomical distance 
(Salvador et al., 2005; see Supplementary Results) and did not observe 
any differences in data quality between 7 and 3 T 
(Supplementary Figure 5). The specificity (Grandjean et al., 2020) was 
determined by the ratio of the FC strength between central regions of 
task negative DMN [anterior cingulate (Cga) and middle cingulate 
cortex] and between the Cga and the middle frontal gyrus (MFG; a 
core region of the task positive ECN). With 7 T, we found significantly 
higher specificity compared to 3 T (Figure 5A, paired t-test, p < 0.05).

3.5. 7  T resting-state graph topology 
showed stronger connections within 
subcortical brain regions

In general, as determined by FDR, 7 T rs1 data revealed more 
significantly correlating connections and higher average connectivity 
strength relative to 3 T (Figure  5B, paired t-test, p < 0.05). For 
topological comparisons, the 7% strongest correlations of the average 
correlation matrices were represented as network graphs consisting of 
nodes (marking brain regions) and edges (marking functional 
connections between them). Those graphs can be fractionated into 
non-overlapping distinct communities (Supplementary Figure  6). 
These communities mostly resemble the ICA RSNs at a more detailed 
level, thereby demonstrating the high correspondence of graphs and 
ICA components (Supplementary Figure 7).

Next, we compared edge-specific FC strength using paired controlled 
network based-statistics against an independent control group (Kreitz 

et al., 2018; 11 healthy subjects that underwent two 3 T resting-state scans 
on different days, with no significant differences observed between scans 
at the α-level of p < 0.014). Thus, statistical differences beyond this value 
of p are most likely attributed to field strength differences and not by the 
variations of repeated measures per se. Based on the family wise error 
(pFWE) of the whole component of interconnected nodes, we assessed 
significant differences beyond this α-level by permutation of pairs 
between control and study group. To adjust for the general higher 
correlation values at 7 T, we normalized the data to the same mean in 
order to capture specific FC strength enhancements related to rather 
qualitative effects. As shown in Figure  5C, we  demonstrate that the 
enhanced connectivity at 7 T was maintained for subcortical and inferior 
regions, particularly for the thalamus, basal ganglia and the temporal 
cortex (α = 0.014, pFWE < 0.0001).

3.6. At 7  T, the second resting-state 
measurements were more harmonized 
between subjects

Next, we  demonstrated the reliability of the resting-state 
measurements by cross-correlating single subject’s matrices for rs1 
and rs2 without the motor task in between (n = 9), which were similar 
for each subject (Figure  5D). We  detected significantly higher 
variability between subjects at rs1 for 7 T compared to 3 T (one factor 
repeated measure ANOVA, F = 31.63, p < 0.05), but no significant field 
strength-dependent differences at rs2, likely reflecting a higher 
specificity required to characterize individual resting-state networks. 
These networks are shaped by individual personality and experience. 
Their variability is based on individual connections and is therefore 
predestined to be  visible in network graphs, but not in the more 
general ICA components. Additionally, 7 T rs2 measurements were 
more similar between subjects than the corresponding rs1 
measurements (Figure  5E, top, ANOVA follow up Tukey HSD, 
corrected p < 0.05,) indicating that the shared environmental 
conditions (the rest inside the scanner), led to more harmonized 
resting-states in 7 T rs2. This effect was not observed with 3 T. The 
intra-subject reproducibility (n = 9) was not significantly different 
between field strengths (Figure 5E, bottom, paired t-test, p < 0.05).

3.7. 7  T-fMRI revealed significant 
modulations in the resting-state after an 
executed motor task

Given our findings suggesting that 7 T-fMRI detects functional 
signals in cortical regions with a higher tSNR-independent specificity, 
we next assessed short-term resting-state modulations immediately 
following a finger-tapping motor task. Subjects who performed the 
motor task between the two resting-state measurements, each at 7 
and 3 T, (ft-group, n = 9) were compared to those remaining at rest 
during the whole session (rest-group, n = 9). Given the harmonization 
of the inter-subject variability we detected in rs2, we hypothesized 
that motor task effects might only be  visible in the rs2 group 
comparison. Indeed, we only detected a significant component of 
reinforced connections in the 7 T rs2 group following the motor task 
[α = 0.01, pFWE = 0.003, network-based statistic (NBS) analysis, see 
the section 2]. Interestingly, the increased connectivity strength 

TABLE 2 PCA of BOLD response parameters.

Eigenvalue (%) 33.0 65.0 86.0 96.7

Principle 
component

PC1 PC2 PC3 PC4

Activation volume 0.295 −0.115 −0.635 −0.674

Amplitude height 0.430 −0.479 0.318 0.172

Amplitude width 0.085 −0.281 −0.655 0.676

Amplitude symmetry −0.448 −0.529 −0.065 −0.106

Time to peak 0.466 0.505 −0.104 0.185

tCNR 0.551 −0.379 0.228 −0.119

Loadings of the first four PCs. Loadings above 0.5 for each PC are highlighted in grey. Only 
PC1 and PC2 contribute to the separation between 7 and 3 T measurements.
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FIGURE 4

Resting-state Networks (RSNs) derived from 3 to 7 T fMRI and 20-component ICA. RSNs were identified in comparison to two published templates (see 
Supplementary Results and Supplementary Figure 2). (A) ICA z score maps thresholded at z score = 2 (corresponding to p < 0.05, uncorrected). The 
arrows indicate additional regions in either the 3T or 7T ICA component of the respective RSN. Visualization of the three most informative orthogonal 
slices for each 3/7 T pair superimposed on the MNI standard space template image. (B) Similarity of 3 and 7 T paired RSNs calculated via spatial cross 
correlation of ICA z score maps. (C,D) Comparison of thresholded ICA maps (z score > 2) of 3/7 T pairs using total volume (C) and average z score as a 
measure for functional connectivity (D).
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occurred primarily in regions relevant to the previous motor 
performance, namely M1 and MFG, but now ipsilateral to the 
stimulation side (Figure 6A). Both regions were activated bilaterally, 

though the M1 contralateral region was, as expected, more strongly 
affected (Supplementary Table  1). To investigate relationships 
between contralateral activation and ipsilateral connectivity 

FIGURE 5

Evaluation of resting-state graphs derived from multi-seed-region analysis. (A) Specificity of resting-state graphs of the first scan (rs1) described as ratio 
of the functional connectivity strength (z) of the anterior cingulum to the middle cingulum (Cgm) and to the middle frontal gyrus (MFG; n  =  18). 
Significance was determined by two tailed paired t-test (*p  <  0.05). (B) Properties of rs1 graphs thresholded for significantly correlating connections via 
BY-FDR (q  =  0.05, n  =  298 time points). Left: average functional connectivity strength. Right: number of significant functional connections (n  =  18). 
Significance was determined by two tailed paired t-test (*p  <  0.05). (C) Significantly enhanced functional connectivity of 7 T compared to 3  T rs1 graphs 
with a connection density of 7% (n  =  18). Only connections are shown that remain significantly strengthened after each measurement’s normalization 
to its average functional connectivity strength. Significant components were determined by paired controlled network based statistics (pNBS, α  =  0.014, 
pFWE  <  0.0001). (D,E) Reproducibility and variability of both resting-state scans rs1 and rs2 at 3 and 7  T. Only participants with rest in between both scans 
were considered (n  =  9). (D) Similarity matrix of all resting-state graphs assessed via spatial cross correlation of the MSRA z-correlation matrices. 
(E) Subject variability derived from pairwise correlation values. Top: between subject variability (n  =  36 subject pairs, one factor repeated measure 
ANOVA followed by Tukey HSD with Bonferroni correction, *p  <  0.05). Bottom: within subject variability (n  =  9 rs1/rs2 pairs, two tailed paired t-test, no 
significance).
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FIGURE 6

Analysis rational to detect modulations due to a prior motor task performance. (A) Significant graph components of enhanced resting-state 
connectivity strength in the second resting-state scan rs2 after finger-tapping compared to rs2 after rest (n  =  9 per group, NBS, α  =  0.01, pFWE  =  0.003). 
The flash indicates the stimulation side. (B) Combined seed region correlation (increasing red to yellow) and anticorrelation (increasing blue to green) 
maps using seeds in right motor cortex (M1, left) and right middle frontal gyrus (MFG, right) superimposed on MNI standard space template image. 
Centroid MNI coordinates of connected areas per region in rs2 of the ft-group are given Supplementary Table 2. Maps were thresholded for 
significance using BY-FDR (q  =  0.05, n  =  298 time points). The presented horizontal slice was chosen with respect to intersect the seed region (MNI 
z  =  26 for M1 and z  =  28 for MFG). Bottom: Areas with significant correlation and anticorrelation differences between rs2 and rs1 in combined for both 
rest- and ft. group. Displayed are average group differences per voxel (two tailed paired voxel wise t-test with permutation correction, p  <  0.05). (C,D) 
Regional average differences Δz (rs2  −  rs1) separately for ft- and rest-group (n  =  9 per group), but based on the same set of voxels derived from (B) for 
seed M1 (C) and seed MFG (D). Only regions with significant voxels exceeding 1% of total region voxels were taken into account. Region-specific 
significance was determined by two tailed unpaired t-test with Benjamini-Hochberg FDR correction (*p  <  0.05, red: ft.  >  rest, blue: ft.  <  rest). Exact 
p values and abbreviation of region names are given in Supplementary Table 3. L: left hemisphere, R: right hemisphere.
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modulation, we  calculated the interhemispheric functional 
connectivity between bilateral M1 and MFG during motor 
performance. We found that the average time courses of both bilateral 
regions were significantly correlated (critical z-value = 0.072, p < 0.05, 
df = 744), indicating a strong interhemispheric communication. 
However, this correlation was significantly weaker for 3 T compared 
to 7 T (Supplementary Figure 8, paired t-test, p < 0.05,).

Next, we used the M1 and MFG regions at 7 T as seeds for further 
analysis within subjects. For both the right M1 and right MFG, 
we compared the seed correlation maps of rs1 and rs2 using a voxel 
wise paired t-test, and identified significant voxels (p < 0.05, corrected) 
separately for the ft- and the rest-group. Subsequently, the significant 
voxels of both groups were combined and assigned to atlas-based 
brain regions. Thus, group-specific differences in connectivity strength 
were assessed within the same set of voxels (Figure  6B, see 
Supplementary Table 3 for centroid MNI coordinates per region). 
Although rs1 was recorded for both groups before any intervention, 
the average seed correlation maps of the M1 seed showed some 
differences. This variation in the extension of correlating voxel around 
the M1 seed region might be due to individual differences in task 
performance and motor skills. However, the basic patterns of the 
MFG-seed correlation maps were comparable indicating a more stable 
and less individual MFG connectivity.

Finally, using this set of voxels, the average FC differences between 
subsequent resting-state measurements (Δz rs2–rs1) per brain region in 
the ft-group were controlled by an unpaired t-test against those in the 
rest-group (p < 0.05, corrected). Higher Δz values in one group indicate a 
more increased (positive Δz) or less decreased (negative Δz) FC strength 
in rs2 compared to the other group (Figures 6C,D; Supplementary Table 3).

Ultimately, we  found that, controlled against the rest-period, 
execution of the motor task led to significantly increased Δz of M1 to 
ipsilateral frontal, secondary somatosensory (S2) areas, contralateral 
superior parietal cortex, bilateral inferior temporal cortex (ITe), and pons 
(Figure 6C, top; Figure 7). We did not observe any significant differences 
in anticorrelating Δz (rs2 − rs1 of negative correlations in the above-
described set of voxels, Figure 6C, bottom). In MFG, we found increased 
Δz to the ipsilateral inferior frontal, auditory, medial temporal (MTe), 
bilateral superior frontal, and precuneus cortex (Figure 6D, top; Figure 7).

In contrast to the dominantly enhanced positive correlations with 
ipsilateral regions, anticorrelating Δz involved mainly contralateral 
regions. Here, the contralateral angular gyrus, ITe, occipital cortex 
(Occ), parahippocampus, and the ipsilateral superior posterior lobe 
of the cerebellum showed enhanced anticorrelated Δz, and 
contralateral S2, auditory cortex, MTe and ipsilateral Occ showed 
reduced anticorrelated Δz in the ft-group compared to the rest-group 
(Figure  6D, bottom; Figure  7, bottom). Additionally, both seeds 
reinforced their connectivity to each other (Figures 6C,D, 7).

Taken together, we demonstrate that a unilateral finger-tapping 
motor task results in contralateral activation of M1 and MFG detected 
by both 3 and 7 T-fMRI. However, modulation of ipsilateral M1 and 
MFG functional connectivity during the subsequent rest period was 
only detected by 7 T-fMRI.

4. Discussion

Here, we examined the influence of high magnetic field strength 
on fMRI using the BOLD signal as an indirect measure of neuronal 

processes in the brain. Specifically, our analysis demonstrates that, 
depending on the field strength, the SNR adapts through a targeted 
variation of the voxel size. Nevertheless, we  successfully 
demonstrated a higher functional specificity of the BOLD signal 
with 7 T-fMRI.

4.1. Higher field strength provoke closer 
association of the BOLD signal with 
neuronal activation resulting in higher 
functional specificity

Under the constraint of an adjusted SNR, motor task-stimulated 
BOLD activation showed a nearly identical activation pattern for 3 
and 7 T. Previous studies exploit the increased SNR of higher field 
strength and report a 300–400% increased activated volume indicating 
largely extended activation patterns (i.e., involved brain regions) and 
higher spatial sensitivity at 7 T (Yacoub et al., 2001; Schafer et al., 2008; 
van der Zwaag et al., 2009; Beisteiner et al., 2011). Thus, we conclude 
that the field strength-dependent higher SNR in earlier work is the 
main contributor of the higher spatial sensitivity of the BOLD 
response. However, even with comparable SNR and tSNR, the 
temporal BOLD responses showed a starkly increased signal 
amplitude and tCNR, which is a direct consequence of the field 
strength-dependent boost of the BOLD signal itself.

Functional connectivity in the resting-state can be analyzed by 
focusing on the 3D domain of interacting network patterns as 
obtained by ICA, or over time using graph-theoretical approaches. 
Here, we found that spatial patterns in resting-state networks derived 
from ICA analysis were highly consistent between 3 and 
7 T. Interestingly, especially the DMN and the pVN did not only 
display the highest spatial similarity but also nearly identical volumes 
and z scores, supporting their general relevance in characterizing 
functional connectivity during rest. The task-associated cognitive and 
sensorimotor networks were more variable, and expressed smaller 
volumes but higher z scores at 7 T, reflecting individual characteristics 
of cognitive and sensorimotor resting-state networks (Bijsterbosch 
et al., 2017).

In contrast, graph-theoretical approaches such as MSRA, 
which rely on pairwise correlations of time courses, are capable 
of resolving functional connectivity over time. Even with lower 
tSNR at 7 T, we  successfully identified significantly stronger 
functional connectivity, indicating enhanced functional 
specificity. This improvement was largely independent of the 
spatial activity distribution and characterized by tSNR-
independent increased BOLD response amplitude, tCNR, and 
functional connectivity strength. These effects might be caused 
by the field strength-dependent enhanced sensitivity to the 
microvasculature. Several authors describe a supralinear increase 
in the change in relaxation rate R2* with increasing field strength 
for various tissues (Gati et al., 1997; Yacoub et al., 2001; Peters 
et al., 2007; van der Zwaag et al., 2009). This was interpreted as 
an increased contribution of microvascular vessels within the 
tissue leading to an increased specificity at 7 T (Yacoub et al., 
2001, van der Zwaag et  al., 2009). Since the hemodynamic 
response to a neural event begins in the tissue microvasculature 
and only then propagates to the larger draining vessels (de Zwart 
et al., 2005), not only the spatial but also the temporal specificity 
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of the BOLD signal to the underlying neuronal activity is 
enhanced. This idea is supported by the strong correlation 
between local field potential (LFP) and BOLD signal changes. 
Notably, LFP also reflect energetically expensive synaptic activity 
(Logothetis et  al., 2001). Furthermore, Siero et  al. (2014) 
demonstrated that the 7 T gradient-echo BOLD signal is strongly 
correlated with the underlying electrophysiology, and thus it 
corresponds well with the neuronal activity. Therefore, 

we conclude that the increased functional specificity at 7 T was 
caused by the closer temporal and spatial association of the 
BOLD signal with the underlying neuronal activation in the 
brain. However, due to the larger voxel size, the increased tSNR 
at 3 T is partially negated by an increased partial volume effect, 
i.e., the detection of a mixed signal of different tissues within one 
voxel volume. To counteract this effect, the voxel size of 2 mm3 
was chosen small enough to minimize partial voluming and 

FIGURE 7

Summary of resting-state connections modulated due to prior finger-tapping. 3D visualization of graphs with nodes and edges. Node size represent 
absolute difference between Δz (rs2−rs1) of the ft-group and the rest-group, edge thickness indicate the size of the affected area (% voxel of total 
region voxel). The white node represents the seed (M1 and MFG, respectively). L: left hemisphere, R: right hemisphere. Ang, angular gyrus; Au, auditory 
cortex; Ceb, cerebellum superior posterior lobe; Cg, cingulate cortex; IFr, inferior frontal cortex; ITe, inferior temporal cortex; LFr, limbic cortex; M1, 
primary motor cortex; MFG, middle frontal gyrus; MTe, middle temporal cortex; Occ, occipital cortex; Pcun, precuneus; pHip, parahippocampal gyrus; 
Pn, pons; S2, secondary somatosensory cortex; SFr, superior frontal cortex; and SPa, superior parietal cortex.
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ensure optimal statistical specificity and sensitivity (Weibull 
et  al., 2008). Additionally, the resting-state time course 
correlations were restricted to grey matter in order to reduce the 
occurrence of tissue mixing in voxel volumes. Nevertheless, 
we cannot exclude an impact of the reduced partial volume effect 
on the higher specificity of 7 T fMRI.

4.2. Higher functional specificity enables 
the detection of a functional correlate to 
the offline replay of neuronal motor 
activity

To exploit the increased functional specificity of 7 T-fMRI, 
we investigated resting-state modulations after a motor movement 
paradigm. Even under the constraint of a completely data-driven 
analysis, we identified the cortical regions M1 and MFG, activated by 
the motor performance, as the core regions that were specifically 
modulated in the subsequent resting-state. Importantly, these 
modulations could not be  detected with 3 T, providing proof of 
concept, that 7 T detects resting state-specific modulations, directly 
driven by neuronal activity that is reflected as specific functional 
connectivity. We  propose that these modulations represent a 
functional correlate to the offline replay of neuronal firing sequences, 
detected by using invasive electrophysiology, e.g., for the mouse 
auditory cortex after an auditory task (Yu et al., 2021) or the human 
motor cortex after a motor task (Eichenlaub et al., 2020).

4.3. Replayed neuronal firing sequences 
immediately initiate the modulation of 
functional memory circuits

In this study, we present a neuronal replay visible in brain-wide 
functional connectivity modulations, complementing the findings of 
replay of electrophysiological neuronal firing sequences (Eichenlaub 
et al., 2020) and probabilistic fMRI activation patterns (Wittkuhn and 
Schuck, 2021) in humans. In contrast to those previous studies, 
we were able to characterize function and nature of the replay. The 
majority of modulated functional connectivity did not resemble that 
of brain regions participating in previous finger tapping-associated 
motor processing, but instead corresponded to frontal–parietal and 
temporal circuits involved in memory processing and consolidation 
(Wager and Smith, 2003; Harrison and Tong, 2009; Vilgis et al., 2014; 
Panichello and Buschman, 2021). This was unexpected, since finger-
tapping is presumed to predominantly lead to motor area activation 
not overlapping with working memory regions (Wesley and Bickel, 
2014). Moreover, task-induced neuronal representations of brain 
activity were found to be inherent in the resting-state (Mennes et al., 
2010), reflecting at least some task-induced brain activity patterns 
during rest (Kusano et al., 2015; Niu et al., 2020). However, the offline 
replay correlate we  identified by 7 T-fMRI, indicates that replayed 
neuronal firing sequences immediately initiate the modulation of 
functional connectivity related to memory circuits. This refers 
dominantly to working memory such as the frontal-temporal parietal 
circuit but also to regions with central roles in autobiographic (here 
the precuneus; Mazzoni et al., 2019) and episodic (here the medial 
temporal gyrus; Rugg and Vilberg, 2013) memory.

4.4. The specific modulation of 
anticorrelated MFG connections support 
the involvement of early memory 
consolidation

We also detected modulated anticorrelations in MFG, an 
important region in memory processing, but not in M1 that 
dominantly reflects the former motor activation. The switch between 
task-positive and task-negative (i.e., anticorrelated) resting-state 
networks is an important feature in memory consolidation (Keller 
et al., 2015; Piccoli et al., 2015; Meskaldji et al., 2016; Franzmeier 
et al., 2017). The MFG is the core region of the task positive executive 
control network which is also implicated in working memory 
processing (Olesen et al., 2004; Osaka et al., 2004), thereby acting as 
the main antagonist to the task negative DMN (McKiernan et al., 
2003). We  found both, enhanced and reduced anticorrelated 
functional connectivity strength. This is in line with Piccoli et al. 
(2015), who suggest a dynamic switch of FC between task positive 
and task negative (i.e., the DMN) brain networks during memory 
consolidation. In general, enhanced anticorrelation is associated with 
better memory performance (Keller et al., 2015; Meskaldji et al., 2016; 
Franzmeier et  al., 2017). In this context we  found enhanced 
anticorrelation to MFG in contralateral regions specifically important 
for memory consolidation such as the angular gyrus (Burianova et al., 
2012; Yuksel et al., 2018), the inferior temporal gyrus (Tomita et al., 
1999; Axmacher et al., 2008), the occipital fusiform gyrus (Kundu 
et al., 2015; Tambini and D’Esposito, 2020), and the parahippocampal 
gyrus (Dickerson and Eichenbaum, 2010; Ward et  al., 2014). 
Additionally, the ipsilateral superior posterior cerebellum, namely 
lobule VI, Crus II, Crus I, and lobule VIIb, were anticorrelated to the 
MFG. The cerebellum is not only involved in motor control but also 
in cognitive and emotional functions including working memory 
(Middleton and Strick, 1994; Baillieux et al., 2008; Keren-Happuch 
et  al., 2014; Guell et  al., 2018). Recent human studies revealed a 
functional topography of the cerebellum with distinct representation 
of different sensorimotor and cognitive functions (Guell et al., 2018; 
Ashida et al., 2019). Some of these functional compartments overlap, 
such as language and emotion (Guell et al., 2018), motor and sensory, 
as well as language and working memory (Ashida et  al., 2019), 
indicating an integrative function of these overlapping areas. 
However, none of these studies investigated the overlap of motor 
response and working memory, although the description of the 
activated areas for both tasks separately indicate the possibility of 
such an overlap. Consistently, finger movement activated the 
ipsilateral anterior lobule V and VI, while activation of areas involved 
in working memory were located in the right lobule VI and, 
depending on the memory load, extended to right CrusII and VIIb 
(Desmond et al., 1997; Guell et al., 2018; Ashida et al., 2019). In the 
present work, we found enhanced anticorrelation to the memory 
related MFG for exactly those cerebellar regions (right lobule VI, 
CrusII, and VIIb) that count for working memory. However, 
additionally to the described motor related lobule V and VI these 
regions were also activated during task performance. Presuming a 
spatial overlap of cerebellar motor control and memory function 
support the hypothesis that the replay of task related activity during 
rest is directly coupled to working memory circuits highlighting the 
integrative role of the RS itself in continuous integration of behavior 
and memory.
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Reduced anticorrelations are more difficult to interpret. 
However, it stands out, that those structures that show reduced 
anticorrelation on the left hemisphere were strengthened in their 
positive correlation on the ipsilateral side (Au, S2, and MTE) and 
vice versa (ITE). Maybe this interhemispheric interplay promotes 
the lateralized region’s specific function in memory consolidation. 
This functional memory related lateralization has been frequently 
observed with memory task induced activation patterns (Wager 
and Smith, 2003) and recently also for anticorrelated connectivity 
strength (Meskaldji et al., 2016).

4.5. The switch between hemispheres of 
M1 functional connections might reflect an 
encoding/retrieval asymmetry

Additionally, the switch between hemispheres regarding M1 
might reflect a hemispheric encoding/retrieval asymmetry 
(HERA; Tulving et  al., 1994; Habib et  al., 2003; Andreau and 
Torres Batan, 2019; Papp et al., 2019). This model describes a 
stronger activation of the left prefrontal cortex during encoding 
of information into memory and the right prefrontal cortex being 
more active during retrieval of memory information. This could 
be recently verified for verbal memory tasks, but not for visual 
(Andreau and Torres Batan, 2019) and was also observed in rats 
performing a novel object recognition test (Papp et al., 2019). In 
the present study, a HERA like switch between hemispheres was 
observed for M1, which was activated on the left hemisphere 
during finger-tapping (respective encoding) and showed 
enhanced connectivity strength to memory related regions on the 
right hemisphere in subsequent rest, which can be presumed to 
be an early maintenance phase of memory consolidation.

4.6. Limitations

Some limitations in this study should be addressed. First, the 
sample size of nine participants per group is relatively low 
compared to recent neuroscience studies. To enhance statistical 
power we  compared paired differences between resting state 
measurements (Δz). Additionally, the proposed statistical 
approach is highly controlled in individual (rs2 vs. control rs1), 
group (ft vs. control rest group), and multiple comparison (voxel 
wise using BY-FDR and region wise using BH-FDR) in order to 
reduce the occurrence of false positive results. We cannot exclude 
that a sufficiently increased sample size in the 3 T study  
would also allow detecting motor cortex offline replay 
modulations despite the lower neuronal specificity. Even if so, 
this does not contradict our finding, that the enhanced specificity 
of high field fMRI facilitate the identification of tiny resting-
state modulations.

Second, SNR of 3 and 7 T measurements were adjusted only 
by adapting the voxel size ratio according to the inverse field 
strength ratio without detailed adaptation of the protocols. The 
actual field strength dependent SNR is also influenced by the RF 
coil and can be  higher (Pohmann et  al., 2016). In fact, the 
resulting 3 T SNR was overcompensated and higher than the 7 T 
SNR. Additionally, the accuracy of SNR and CNR determination 

was limited. Both parameters were calculated using the 
background as reference, which is hampered by the unequally 
distributed g-factor noise across the image. However, methods to 
more accurately determine SNR and CNR are laborious, 
expensive and not easily applicable to clinical routine or 
biological practice. Therefore, we  chose the commonly used 
method of Magnotta et al. (2006) and defined the background 
regions as the largest contiguous region outside the brain tissue 
mask with less intensity than the 5% quantile of the brain. While 
this is not sufficient, it at least eliminates larger artifacts and 
reduces variability.

Third, we provide no experimental evidence for the relationship 
of modulated motor cortex (M1 and MFG) connections to memory 
consolidation. This should be part of future studies.

5. Conclusion

In conclusion, we  demonstrated, for the first time, the 
application of 7 T-fMRI to detect a highly specific neuronal 
activity in the resting-state that is directly linked to the execution 
of a motor task. Keeping SNR constant, spatial distribution of 
functional activation and connectivity did not differ between 
field strength. However, the temporal fluctuation of the BOLD 
signal, mirroring the underlying neuronal activity, showed 
enhanced specificity with higher field strength that is not 
triggered by cortical tSNR. The enhanced specificity of 7 T-fMRI 
was sufficient to capture resting-state modulations following a 
simple finger-tapping motor task assumed to be directly related 
to the offline replay of neuronal firing sequences. Although the 
finger-tapping motor task should neither activate nor enhance 
the connectivity of memory related brain regions the observed 
M1 and MFG modulations dominantly concern memory and 
learning circuits—including well known mechanisms of memory 
consolidation such as anticorrelation of task negative circuits and 
encoding/retrieval asymmetry. We hypothesize that this short-
term initiation of memory circuits accompanying the neuronal 
offline replay is a principle mechanism preparing but not 
necessarily determining later successful memory consolidation. 
Thus, in combination with our sophisticated analysis workflow, 
the higher functional specificity of 7 T fMRI might open the door 
to more detailed and sophisticated basic research aimed at 
understanding human memory consolidation but also 
neurological diagnostics in clinical routine in the very 
near future.
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