21 research outputs found

    DEF6, a novel substrate for the tec kinase ITK, contains a glutamine-rich aggregation-prone region and forms cytoplasmic granules that co-localize with P-bodies

    Get PDF
    Localization of DEF6 (SLAT/IBP), a Rho-family guanine nucleotide exchange factor, to the center of the immune synapse is dependent upon ITK, a Tec-family kinase that regulates the spatiotemporal organization of components of T cell signaling pathways and Cdc42-dependent actin polymerization. Here we demonstrate that ITK both interacts with DEF6 and phosphorylates DEF6 at tyrosine residues Tyr210 and Tyr222. Expression of a GFP-tagged Y210E-Y222E phosphomimic resulted in the formation of DEF6 cytoplasmic granules that co-localized with decapping enzyme 1 (DCP1), a marker of P-bodies; sites of mRNA degradation. Similarly treatment of cells with puromycin or sodium arsenite, reagents that arrest translation, also resulted in the accumulation of DEF6 in cytoplasmic granules. Bioinformatics analysis identified a glutamine-rich, heptad-repeat region; a feature of aggregating proteins, within the C-terminal region of DEF6 with the potential to promote granule formation through a phosphorylation-dependent unmasking of this region. These data suggest that in addition to its role as a GEF, DEF6 may also function in regulating mRNA translation

    Slow cycling intestinal stem cell and Paneth cell responses to Trichinella spiralis infection

    Get PDF
    There is limited information regarding responses by slow cycling stem cells during T. spiralis-induced T-cell mediated intestinal inflammation and how such responses may relate to those of Paneth cells. Transgenic mice, in which doxycycline induces expression of histone 2B (H2B)-green fluorescent protein (GFP), were used. Following discontinuation of doxycycline (β€œchase” period), retention of H2B-GFP enabled the identification of slow cycling stem cells and long-lived Paneth cells. Inflammation in the small intestine (SI) was induced by oral administration of T. spiralis muscle larvae. Epithelial retention of H2B-GFP per crypt cell position (cp) was studied following immunohistochemistry and using the Score and Wincrypts program. Compared to non-infected controls, there was significant reduction in the number of H2B-GFP-retaining stem cells in T. spiralis-infected small intestines. H2B-GFP-retaining stem cells peaked at around cp 4 in control sections, but smaller peaks at higher cell positions (>10) were seen in sections of inflamed small intestines. In the latter, there was a significant increase in the total number of Paneth cells, with significant reduction in H2B-GFP-retaining Paneth cells, but a marked increase in unlabelled (H2B-GFP-negative) Paneth cells. In conclusion, following T. spiralis-infection, putative slow cycling stem cell numbers were reduced. A marked increase in newly generated Paneth cells at the crypt base led to higher cell positions of the remaining slow cycling stem cells

    Def6 Is Required for Convergent Extension Movements during Zebrafish Gastrulation Downstream of Wnt5b Signaling

    Get PDF
    During gastrulation, convergent extension (CE) cell movements are regulated through the non-canonical Wnt signaling pathway. Wnt signaling results in downstream activation of Rho GTPases that in turn regulate actin cytoskeleton rearrangements essential for co-ordinated CE cell movement. Rho GTPases are bi-molecular switches that are inactive in their GDP-bound stage but can be activated to bind GTP through guanine nucleotide exchange factors (GEFs). Here we show that def6, a novel GEF, regulates CE cell movement during zebrafish gastrulation. Def6 morphants exhibit broadened and shortened body axis with normal cell fate specification, reminiscent of the zebrafish mutants silberblick and pipetail that lack Wnt11 or Wnt5b, respectively. Indeed, def6 morphants phenocopy Wnt5b mutants and ectopic overexpression of def6 essentially rescues Wnt5b morphants, indicating a novel role for def6 as a central GEF downstream of Wnt5b signaling. In addition, by knocking down both def6 and Wnt11, we show that def6 synergises with the Wnt11 signaling pathway

    ID4 levels dictate the stem cell state in mouse spermatogonia

    Get PDF
    Spermatogenesis is a classic model of cycling cell lineages that depend on a balance between stem cell self-renewal for continuity and the formation of progenitors as the initial step in the production of differentiated cells. The mechanisms that guide the continuum of spermatogonial stem cell (SSC) to progenitor spermatogonial transition and precise identifiers of subtypes in the process are undefined. Here we used an Id4-eGfp reporter mouse to discover that EGFP intensity is predictive of the subsets, with the ID4-EGFPBright population being mostly, if not purely, SSCs, whereas the ID4-EGFPDim population is in transition to the progenitor state. These subsets are also distinguishable by transcriptome signatures. Moreover, using a conditional overexpression mouse model, we found that transition from the stem cell to the immediate progenitor state requires downregulation of Id4 coincident with a major change in the transcriptome. Collectively, our results demonstrate that the level of ID4 is predictive of stem cell or progenitor capacity in spermatogonia and dictates the interface of transition between the different functional states

    Id4, a New Candidate Gene for Senile Osteoporosis, Acts as a Molecular Switch Promoting Osteoblast Differentiation

    Get PDF
    Excessive accumulation of bone marrow adipocytes observed in senile osteoporosis or age-related osteopenia is caused by the unbalanced differentiation of MSCs into bone marrow adipocytes or osteoblasts. Several transcription factors are known to regulate the balance between adipocyte and osteoblast differentiation. However, the molecular mechanisms that regulate the balance between adipocyte and osteoblast differentiation in the bone marrow have yet to be elucidated. To identify candidate genes associated with senile osteoporosis, we performed genome-wide expression analyses of differentiating osteoblasts and adipocytes. Among transcription factors that were enriched in the early phase of differentiation, Id4 was identified as a key molecule affecting the differentiation of both cell types. Experiments using bone marrow-derived stromal cell line ST2 and Id4-deficient mice showed that lack of Id4 drastically reduces osteoblast differentiation and drives differentiation toward adipocytes. On the other hand knockdown of Id4 in adipogenic-induced ST2 cells increased the expression of PparΞ³2, a master regulator of adipocyte differentiation. Similar results were observed in bone marrow cells of femur and tibia of Id4-deficient mice. However the effect of Id4 on PparΞ³2 and adipocyte differentiation is unlikely to be of direct nature. The mechanism of Id4 promoting osteoblast differentiation is associated with the Id4-mediated release of Hes1 from Hes1-Hey2 complexes. Hes1 increases the stability and transcriptional activity of Runx2, a key molecule of osteoblast differentiation, which results in an enhanced osteoblast-specific gene expression. The new role of Id4 in promoting osteoblast differentiation renders it a target for preventing the onset of senile osteoporosis
    corecore