20 research outputs found

    Touch and Hearing Mediate Osseoperception

    Get PDF
    Osseoperception is the sensation arising from the mechanical stimulation of a bone-anchored prosthesis. Here we show that not only touch, but also hearing is involved in this phenomenon. Using mechanical vibrations ranging from 0.1 to 6 kHz, we performed four psychophysical measures (perception threshold, sensation discrimination, frequency discrimination and reaction time) on 12 upper and lower limb amputees and found that subjects: consistently reported perceiving a sound when the stimulus was delivered at frequencies equal to or above 400 Hz; were able to discriminate frequency differences between stimuli delivered at high stimulation frequencies (∌1500 Hz); improved their reaction time for bimodal stimuli (i.e. when both vibration and sound were perceived). Our results demonstrate that osseoperception is a multisensory perception, which can explain the improved environment perception of bone-anchored prosthesis users. This phenomenon might be exploited in novel prosthetic devices to enhance their control, thus ultimately improving the amputees' quality of life

    Electro-acoustic performance of the new bone vibrator Radioear B81: A comparison with the conventional Radioear B71

    No full text
    Objective: The objective is to evaluate the electro-acoustic performance of a new audiometric bone vibrator, the B81 from Radioear Corporation, USA. Comparison will be made with the widely used B71 which has well-known limitations at low frequencies. Design: The B81 is based on the balanced electromagnetic separation transducer (BEST) principle where static forces are counterbalanced so that nonlinear distortion forces are reduced and maximum hearing levels can be increased. Study sample: Maximum hearing level, total harmonic distortion (THD), frequency response, and electrical impedance were measured for six devices of each bone vibrator type on an artificial mastoid. Results: It was found that B81 reaches 10.7-22.0 dB higher maximum (@ THD. 6% or V-in. 6 V-RMS) hearing levels than B71 for frequencies below 1500 Hz, and had significantly lower THD up to 1000 Hz. There was no statistically significant difference between their frequency response, except a deviation at the mid frequencies (alpha = 0.01) where B81 was more efficient and the electrical impedances were practically the same. Conclusions: In general, B81 had an improved electro-acoustic performance compared to B71 and is compatible with same audiometers. In particular, B81 allows for sensorineural hearing loss to be measured at considerably higher hearing levels than with B71 below 1500 Hz

    Nasal sound pressure as objective verification of implant in active transcutaneous bone conduction devices

    No full text
    Sabine Reinfeldt,1 Cristina Rigato,1 Bo Håkansson,1 Karl-Johan Fredén Jansson,1 Måns Eeg-Olofsson21Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; 2Department of Otorhinolaryngology, Head and Neck Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SwedenObjective: Active transcutaneous bone conduction devices consist of an external audio processor and an internal implant under intact skin. During the surgical procedure, it is important to verify the functionality of the implant before the surgical wound is closed. In a clinical study with the new bone conduction implant (BCI), the functionality of the implant was tested with an electric transmission test, where the output was the nasal sound pressure (NSP) recorded in the ipsilateral nostril. The same measurement was performed in all follow-up visits to monitor the implant’s functionality and transmission to bone over time. The objective of this study was to investigate the validity of the NSP method as a tool to objectively verify the implant’s performance intraoperatively, as well as to follow-up the implant’s performance over time.Design: Thirteen patients with the BCI were included, and the NSP measurement was part of the clinical study protocol. The implant was electrically stimulated with an amplitude-modulated signal generator using a swept sine 0.1–10 kHz. The NSP was measured with a probe tube microphone in the ipsilateral nostril.Results: The NSP during surgery was above the noise floor for most patients within the frequency interval 0.4–5 kHz, showing NSP values for expected normal transmission of a functioning implant. Inter-subject comparison showed large variability, but follow-up results showed only minor variability within each subject. Further investigation showed that the NSP was stable over time.Conclusion: The NSP method is considered applicable to verify the implant’s functionality during and after surgery. Such a method is important for implantable devices, but should be simplified and clinically adapted. Large variations between subjects were found, as well as smaller variability in intra-subject comparisons. As the NSP was found to not change significantly over time, stable transmission to bone, and implant functionality, were indicated.Keywords: bone conduction, nasal sound pressure, bone conduction implant, ear-canal sound pressure, objective intraoperative verificatio

    Robustness and lifetime of the bone conduction implant – a pilot study

    No full text
    Karl-Johan Fredén Jansson,1 Bo Håkansson,1 Cristina Rigato,1 Måns Eeg-Olofsson,2 Sabine Reinfeldt1 1Department of Electrical Engineering, Chalmers University of Technology, Göteborg, Sweden; 2Department of Otorhinolaryngology, Head and Neck Surgery, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Objectives: The objective of this study was to develop methods for evaluating the mechanical robustness and estimating the lifetime of the novel bone conduction implant (BCI) that is used in a clinical study. The methods are intended to be applicable to any similar device.Materials and methods: The robustness was evaluated using tests originally developed for cochlear implants comprising a random vibration test, a shock test, a pendulum test, and an impact test. Furthermore, magnetically induced torque and demagnetization during magnetic resonance imaging at 1.5 T were investigated using a dipole electromagnet. To estimate the lifetime of the implant, a long-term age-accelerated test was performed.Results: Out of all the tests, the pendulum and the impact tests had the largest effect on the electro-acoustic performance of the BCI implant, even if the change in performance was within acceptable limits (<20%). In comparison with baseline data, the lower and higher resonance peaks shifted down in frequency by 13% and 18%, respectively, and with a loss in magnitude of 1.1 and 2.0 dB, respectively, in these tests.Conclusion: A complete series of tests were developed, and the BCI passed all the tests; its lifetime was estimated to be at least 26 years for patients who are using the implant for 12 hours on a daily basis. Keywords: audiology, bone conduction audiometry, electromagnetic transducer, electro-acoustic

    Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla

    No full text
    Karl-Johan Fredén Jansson,1 Bo Håkansson,1 Sabine Reinfeldt,1 Cristina Rigato,1 Måns Eeg-Olofsson2 1Department of Signals and Systems, Chalmers University of Technology, 2Deptartment of Otorhinolaryngology Head and Neck Surgery, Sahlgrenska University Hospital, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Purpose: The objective of this pilot study was to investigate if an active bone conduction implant (BCI) used in an ongoing clinical study withstands magnetic resonance imaging (MRI) of 1.5 Tesla. In particular, the MRI effects on maximum power output (MPO), total harmonic distortion (THD), and demagnetization were investigated. Implant activation and image artifacts were also evaluated.Methods and materials: One implant was placed on the head of a test person at the position corresponding to the normal position of an implanted BCI and applied with a static pressure using a bandage and scanned in a 1.5 Tesla MRI camera. Scanning was performed both with and without the implant, in three orthogonal planes, and for one spin-echo and one gradient-echo pulse sequence. Implant functionality was verified in-between the scans using an audio processor programmed to generate a sequence of tones when attached to the implant. Objective verification was also carried out by measuring MPO and THD on a skull simulator as well as retention force, before and after MRI.Results: It was found that the exposure of 1.5 Tesla MRI only had a minor effect on the MPO, ie, it decreased over all frequencies with an average of 1.1±2.1 dB. The THD remained unchanged above 300 Hz and was increased only at lower frequencies. The retention magnet was demagnetized by 5%. The maximum image artifacts reached a distance of 9 and 10 cm from the implant in the coronal plane for the spin-echo and the gradient-echo sequence, respectively. The test person reported no MRI induced sound from the implant.Conclusion: This pilot study indicates that the present BCI may withstand 1.5 Tesla MRI with only minor effects on its performance. No MRI induced sound was reported, but the head image was highly distorted near the implant.Keywords: bone conduction implant (BCI), magnetic resonance imaging (MRI), image artifacts, demagnetization, magnetic torqu

    MRI Induced Torque and Demagnetization in Retention Magnets for a Bone Conduction Implant

    No full text
    Performing magnetic resonance imaging (MRI) examinations in patients who use implantable medical devices involve safety risks both for the patient and the implant. Hearing implants often use two permanent magnets, one implanted and one external, for the retention of the external transmitter coil to the implanted receiver coil to achieve an optimal signal transmission. The implanted magnet is subjected to both demagnetization and torque, magnetically induced by the MRI scanner. In this paper, demagnetization and a comparison between measured and simulated induced torque is studied for the retention magnet used in a bone conduction implant (BCI) system. The torque was measured and simulated in a uniform static magnetic field of 1.5 T. The magnetic field was generated by a dipole electromagnet and permanent magnets with two different types of coercive fields were tested. Demagnetization and maximum torque for the high coercive field magnets was 7.7% +/- 2.5% and 0.20 +/- 0.01 Nm, respectively and 71.4% +/- 19.1% and 0.18 +/- 0.01 Nm for the low coercive field magnets, respectively. The simulated maximum torque was 0.34 Nm, deviating from the measured torque in terms of amplitude, mainly related to an insufficient magnet model. The BCI implant with high coercive field magnets is believed to be magnetic resonance (MR) conditional up to 1.5 T if a compression band is used around the skull to fix the implant. This is not approved and requires further investigations, and if removal of the implant is needed, the surgical operation is expected to be simple

    The bone conduction implant: Clinical results of the first six patients.

    No full text
    Objective: To investigate audiological and quality of life outcomes for a new active transcutaneous device, called the bone conduction implant (BCI), where the transducer is implanted under intact skin. Design: A clinical study with sound field audiometry and questionnaires at six-month follow-up was conducted with a bone-anchored hearing aid on a softband as reference device. Study sample: Six patients (age 18-67 years) with mild-to-moderate conductive or mixed hearing loss. Results: The surgical procedure was found uneventful with no adverse events. The first hypothesis that BCI had a statistically significant improvement over the unaided condition was proven by a pure-tone-average improvement of 31.0 dB, a speech recognition threshold improvement in quiet (27.0 dB), and a speech recognition score improvement in noise (51.2 %). At speech levels, the signal-to-noise ratio threshold for BCI was - 5.5 dB. All BCI results were better than, or similar to the reference device results, and the APHAB and GBI questionnaires scores showed statistically significant improvements versus the unaided situation, supporting the second and third hypotheses. Conclusions: The BCI provides significant hearing rehabilitation for patients with mild-to-moderate conductive or mixed hearing impairments, and can be easily and safely implanted under intact skin

    Technical design of a new bone conduction implant (BCI) system

    No full text
    Objective: The objective of this study is to describe the technical design and verify the technical performance of a new bone conduction implant (BCI) system. Design: The BCI consists of an external audio processor and an implanted unit called the bridging bone conductor. These two units use an inductive link to communicate with each other through the intact skin in order to drive an implanted transducer. Study sample: In this study, the design of the full BCI system has been described and verified on a skull simulator and on real patients. Results: It was found that the maximum output force (peak 107 dB re 1 N) of the BCI is robust for skin thickness range of 2-8 mm and that the total harmonic distortion is below 8% in the speech frequency range for 70 dB input sound pressure level. The current consumption is 7.5 mA, which corresponds to 5-7 days use with a single battery. Conclusions: This study shows that the BCI is a robust design that gives a sufficiently high output and an excellent sound quality for the hearing rehabilitation of indicated patients

    VEMP using a new low-frequency bone conduction transducer

    No full text
    Bo Håkansson,1 Karl-Johan Fredén Jansson,1 Tomas Tengstrand,2 Leif Johannsen,3 Måns Eeg-Olofsson,4 Cristina Rigato,1 Elisabeth Dahlström,4 Sabine Reinfeldt1 1Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden; 2Department of Audiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 3Ortofon A/S, Nakskov, Denmark; 4Department of Otolaryngology, Head and Neck Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden Objective: A new prototype bone conduction (BC) transducer B250, with an emphasized low-frequency response, is evaluated in vestibular evoked myogenic potential (VEMP) investigations. The aim was to compare cervical (cVEMP) and ocular (oVEMP) responses using tone bursts at 250 and 500 Hz with BC stimulation using the B250 and the conventional B81 transducer and by using air conduction (AC) stimulation.Methods: Three normal subjects were investigated in a pilot study. BC stimulation was applied to the mastoids in cVEMP, and both mastoid and forehead in oVEMP investigations.Results: BC stimulation was found to reach VEMP thresholds at considerably lower hearing levels than in AC stimulation (30–40 dB lower oVEMP threshold at 250 Hz). Three or more cVEMP and oVEMP responses at consecutive 5 dB increasing mastoid stimulation levels were only obtained in all subjects using the B250 transducer at 250 Hz. Similar BC thresholds were obtained for both ipsilateral and contralateral mastoid stimulation. Forehead stimulation, if needed, may require a more powerful vibration output.Conclusion: Viable VEMP responses can be obtained at a considerably lower hearing level with BC stimulation than by AC stimulation. The cVEMP and oVEMP responses were similar when measured on one side and with the B250 attached to both ipsilateral and contralateral mastoids. Keywords: vestibular investigation, air conduction, bone conduction, VEMP, cVEMP, oVEM
    corecore