7 research outputs found

    SYSTEMS AND METHODS FOR ACTUATING SOFT ROBOTIC ACTUATORS

    Get PDF
    Systems and methods for providing a soft robot is provided. In one system , a robotic device includes a flexible body having a fluid chamber, where a portion of the flexible body includes an elastically extensible material and a portion of the flexible body is strain limiting relative to the elastically extensible material. The robotic device can further include a pressurizing inlet in fluid communication with the fluid chamber, and a pressurizing device in fluid communication with the pressurizing inlet, the pressurizing device including a reaction chamber configured to accommodate a gas producing chemical reaction for providing pressurized gas to the pressurizing inlet

    SYSTEMS AND METHODS FOR ACTUATING SOFT ROBOTIC ACTUATORS

    Get PDF
    Systems and methods for providing a soft robot is provided. In one system , a robotic device includes a flexible body having a fluid chamber, where a portion of the flexible body includes an elastically extensible material and a portion of the flexible body is strain limiting relative to the elastically extensible material. The robotic device can further include a pressurizing inlet in fluid communication with the fluid chamber, and a pressurizing device in fluid communication with the pressurizing inlet, the pressurizing device including a reaction chamber configured to accommodate a gas producing chemical reaction for providing pressurized gas to the pressurizing inlet

    A Crisis-Responsive Framework for Medical Device Development Applied to the COVID-19 Pandemic

    No full text
    The disruption of conventional manufacturing, supply, and distribution channels during the COVID-19 pandemic caused widespread shortages in personal protective equipment (PPE) and other medical supplies. These shortages catalyzed local efforts to use nontraditional, rapid manufacturing to meet urgent healthcare needs. Here we present a crisis-responsive design framework designed to assist with product development under pandemic conditions. The framework emphasizes stakeholder engagement, comprehensive but efficient needs assessment, rapid manufacturing, and modified product testing to enable accelerated development of healthcare products. We contrast this framework with traditional medical device manufacturing that proceeds at a more deliberate pace, discuss strengths and weakness of pandemic-responsive fabrication, and consider relevant regulatory policies. We highlight the use of the crisis-responsive framework in a case study of face shield design and production for a large US academic hospital. Finally, we make recommendations aimed at improving future resilience to pandemics and healthcare emergencies. These include continued development of open source designs suitable for rapid manufacturing, education of maker communities and hospital administrators about rapidly-manufactured medical devices, and changes in regulatory policy that help strike a balance between quality and innovation.NIH/NCI (Grants P30-CA006516, U54-CA225088, T32-GM007753

    Regulatory and Safety Considerations in Deploying a Locally Fabricated, Reusable Face Shield in a Hospital Responding to the COVID-19 Pandemic

    No full text
    Due to supply chain disruption, the COVID-19 pandemic has caused severe shortages in personal protective equipment for health care professionals. Local fabrication based on 3D printing is one way to address this challenge, particularly in the case of products such as protective face shields. No clear path exists, however, for introducing a locally fabricated product into a clinical setting. Methods: We describe a research protocol under Institutional Review Board supervision that allowed clinicians to participate in an iterative design process followed by real-world testing in an emergency department. All designs, materials used, testing protocols, and survey results are reported in full to facilitate similar efforts in other clinical settings. Findings: Clinical testing allowed the incident command team at a major academic medical center to introduce the locally fabricated face shield into general use in a rapid but well-controlled manner. Unlike standard hospital face shields, the locally fabricated design was intended to be reusable. We discuss the design and testing process and provide an overview of regulatory considerations associated with fabrication and testing of personal protective equipment, such as face shields. Conclusions: Our work serves as a case study for robust, local responses to pandemic-related disruption of medical supply chains with implications for health care professionals, hospital administrators, regulatory agencies, and concerned citizens in the COVID-19 and future health care emergencies.NIH/NCI (Grants U54-CA225088 and T32-GM007753

    De Novo Powered Air-Purifying Respirator Design and Fabrication for Pandemic Response

    No full text
    The rapid spread of COVID-19 and disruption of normal supply chains has resulted in severe shortages of personal protective equipment (PPE), particularly devices with few suppliers such as powered air-purifying respirators (PAPRs). A scarcity of information describing design and performance criteria for PAPRs represents a substantial barrier to mitigating shortages. We sought to apply open-source product development (OSPD) to PAPRs to enable alternative sources of supply and further innovation. We describe the design, prototyping, validation, and user testing of locally manufactured, modular, PAPR components, including filter cartridges and blower units, developed by the Greater Boston Pandemic Fabrication Team (PanFab). Two designs, one with a fully custom-made filter and blower unit housing, and the other with commercially available variants (the “Custom” and “Commercial” designs, respectively) were developed; the components in the Custom design are interchangeable with those in Commercial design, although the form factor differs. The engineering performance of the prototypes was measured and safety validated using National Institutes for Occupational Safety and Health (NIOSH)-equivalent tests on apparatus available under pandemic conditions at university laboratories. Feedback was obtained from four individuals; two clinicians working in ambulatory clinical care and two research technical staff for whom PAPR use is standard occupational PPE; these individuals were asked to compare PanFab prototypes to commercial PAPRs from the perspective of usability and suggest areas for improvement. Respondents rated the PanFab Custom PAPR a 4 to 5 on a 5 Likert-scale 1) as compared to current PPE options, 2) for the sense of security with use in a clinical setting, and 3) for comfort compared to standard, commercially available PAPRs. The three other versions of the designs (with a Commercial blower unit, filter, or both) performed favorably, with survey responses consisting of scores ranging from 3 to 5. Engineering testing and clinical feedback demonstrate that the PanFab designs represent favorable alternatives to traditional PAPRs in terms of user comfort, mobility, and sense of security. A nonrestrictive license promotes innovation in respiratory protection for current and future medical emergencies.</jats:p

    3D Printed frames to enable reuse and improve the fit of N95 and KN95 respirators

    No full text
    Background: In response to supply shortages caused by the COVID-19 pandemic, N95 filtering facepiece respirators (FFRs or “masks”), which are typically single-use devices in healthcare settings, are routinely being used for prolonged periods and in some cases decontaminated under “reuse” and “extended use” policies. However, the reusability of N95 masks is limited by degradation of fit. Possible substitutes, such as KN95 masks meeting Chinese standards, frequently fail fit testing even when new. The purpose of this study was to develop an inexpensive frame for damaged and poorly fitting masks using readily available materials and 3D printing. Results:An iterative design process yielded a mask frame consisting of two 3D printed side pieces, malleable wire links that users press against their face, and cut lengths of elastic material that go around the head to hold the frame and mask in place. Volunteers (n = 45; average BMI = 25.4), underwent qualitative fit testing with and without mask frames wearing one or more of four different brands of FFRs conforming to US N95 or Chinese KN95 standards. Masks passed qualitative fit testing in the absence of a frame at rates varying from 48 to 94 % (depending on mask model). For individuals who underwent testing using respirators with broken or defective straps, 80–100 % (average 85 %) passed fit testing with mask frames. Among individuals who failed fit testing with a KN95, ~ 50 % passed testing by using a frame. Conclusions: Our study suggests that mask frames can prolong the lifespan of N95 and KN95 masks by serving as a substitute for broken or defective bands without adversely affecting fit. Use of frames made it possible for ~ 73 % of the test population to achieve a good fit based on qualitative and quantitative testing criteria, approaching the 85–90 % success rate observed for intact N95 masks. Frames therefore represent a simple and inexpensive way of expanding access to PPE and extending their useful life. For clinicians and institutions interested in mask frames, designs and specifications are provided without restriction for use or modification. To ensure adequate performance in clinical settings, fit testing with user-specific masks and PanFab frames is required
    corecore