208 research outputs found

    Personalized and precision orthodontic therapy

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111225/1/ocr12089.pd

    Genetic analysis of familial non-syndromic primary failure of eruption

    Get PDF
    While some eruption disorders occur as part of a medical syndrome, primary failure of eruption (PFE) – defined as a localized failure of secondary tooth eruption -exists without systemic involvement. Recent studies support that heredity may play an important role in the pathogenesis of PFE. The objective of our human genetic study is to investigate the genetic contribution to PFE

    Evidence of Linkage in a Hispanic Cohort with a Class III Dentofacial Phenotype

    Get PDF
    Despite the prevalence of craniofacial disorders, the genetic contribution remains poorly understood. Class III malocclusion represents a specific craniofacial problem that can be handicapping, both functionally and socially. We hypothesized that the Class III phenotype is genetically linked to specific loci that regulate maxillary or mandibular growth. To determine the region linked to the Class III phenotype in four Hispanic families, we performed a genome-wide scan and linkage analysis using 500 microsatellite markers. Pedigree and linkage analyses revealed that the Class III phenotype (primarily maxillary deficiency) segregates in an autosomal-dominant manner, and that 5 loci (1p22.1, 3q26.2, 11q22, 12q13.13, and 12q23) are suggestive of linkage. Candidate genes within the 12q23 region (ZLR = 2.93) include IGF1, HOXC, and COL2A1. Chromosome 1 results (ZLR = 2.92) were similar to those reported previously in an Asian cohort with mandibular prognathism, suggesting that a common upstream genetic element may be responsible for both mandibular prognathism and maxillary deficiency

    Novel Mutations in PTH1R Associated with Primary Failure of Eruption and Osteoarthritis

    Get PDF
    Autosomal dominant mutations in PTH1R segregate with primary failure of eruption (PFE), marked by clinical eruption failure of adult teeth without mechanical obstruction. While the diagnosis of PFE conveys a poor dental prognosis, there are no reports of PFE patients who carry PTH1R mutations and exhibit any other skeletal problems. We performed polymerase chain reaction–based mutational analysis of the PTH1R gene to determine the genetic contribution of PTH1R in 10 families with PFE. Sequence analysis of the coding regions and intron-exon boundaries of the PTH1R gene in 10 families (n = 54) and 7 isolated individuals revealed 2 novel autosomal dominant mutations in PTH1R (c.996_997insC and C.572delA) that occur in the coding region and result in a truncated protein. One family showed incomplete penetrance. Of 10 families diagnosed with PFE, 8 did not reveal functional (nonsynonymous) mutations in PTH1R; furthermore, 4 families and 1 sporadic case carried synonymous single-nucleotide polymorphisms. Five PFE patients in 2 families carried PTH1R mutations and presented with osteoarthritis. We propose that the autosomal dominant mutations of PTH1R that cause PFE may also be associated with osteoarthritis; a dose-dependent model may explain isolated PFE and osteoarthritis in the absence of other known symptoms in the skeletal system

    Phenotypic Variation in FAM83H- associated Amelogenesis Imperfecta

    Get PDF
    FAM83H gene mutations are associated with autosomal-dominant hypocalcified amelogenesis imperfecta (ADHCAI), which is typically characterized by enamel having normal thickness and a markedly decreased mineral content. This study tested the hypothesis that there are phenotype and genotype associations in families with FAM83H-associated ADHCAI. Seven families segregating ADHCAI (147 individuals) were evaluated. Phenotyping included clinical, radiographic, histological, and biochemical studies, and genotyping was by mutational analysis. Multiple novel FAM83H mutations were identified, including two 2-bp-deletion mutations, the first non-nonsense mutations identified. Craniofacial deviation from normal was more prevalent in the affected individuals. Affected individuals having truncating FAMH3H mutations of 677 or fewer amino acids presented a generalized ADHCAI phenotype, while those having mutations capable of producing a protein of at least 694 amino acids had a unique and previously unreported phenotype affecting primarily the cervical enamel. This investigation shows that unique phenotypes are associated with specific FAM83H mutations

    A novel nonsense PTH1R variant shows incomplete penetrance of primary failure of eruption: a case report

    Get PDF
    Background: Aim of this work was to describe a rare inheritance pattern of Primary Failure of Eruption (PFE) in a small family with incomplete penetrance of PFE and a novel nonsense PTH1R variant. Case presentation: The proband, a 26 year-old man with a significant bilateral open-bite, was diagnosed with PFE using clinical and radiographic characteristics. DNA was extracted from the proband and his immediate family using buccal swabs and the entire PTH1R coding sequence was analyzed, revealing a novel heterozygous nonsense variant in exon 7 of PTH1R (c.505G > T). This variant introduces a premature stop codon in position 169, predicted to result in the production of a truncated and non-functional protein. This variant has never been reported in association with PFE and is not present in the Genome Aggregation Database (gnomAD). Interestingly, the c.505G > T variant has also been identified in the unaffected mother of our proband, suggesting incomplete penetrance of PFE. Conclusions: In this study, we report a new PTH1R variant that segregates in an autosomal dominant pattern and causes PFE with incomplete penetrance. This underlines the diagnostic value of a thorough clinical and genetic analysis of all family members in order to estimate accurate recurrence risks, identify subtle clinical manifestations and provide proper management of PFE patients

    Functional analysis of Ectodysplasin-A mutations causing selective tooth agenesis.

    Get PDF
    Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity
    corecore