91 research outputs found

    Analysis of BRAF and NRAS Mutation Status in Advanced Melanoma Patients Treated with Anti-CTLA-4 Antibodies: Association with Overall Survival?

    Get PDF
    Ipilimumab and tremelimumab are human monoclonal antibodies (Abs) against cytotoxic T-lymphocyte antigen-4 (CTLA-4). Ipilimumab was the first agent to show a statistically significant benefit in overall survival in advanced melanoma patients. Currently, there is no proven association between the BRAFV600 mutation and the disease control rate in response to ipilimumab. This analysis was carried out to assess if BRAFV600 and NRAS mutation status affects the clinical outcome of anti-CTLA-4-treated melanoma patients. This is a retrospective multi-center analysis of 101 patients, with confirmed BRAF and NRAS mutation status, treated with anti-CTLA-4 antibodies from December 2006 until August 2012. The median overall survival, defined from the treatment start date with the anti-CTLA-4. Abs-treatment to death or till last follow up, of BRAFV600 or NRAS mutant patients (n = 62) was 10.12 months (95% CI 6.78-13.2) compared to 8.26 months (95% CI 6.02-19.9) in BRAFV600/NRASwt subpopulation (n = 39) (p = 0.67). The median OS of NRAS mutated patients (n = 24) was 12.1 months and although was prolonged compared to the median OS of BRAF mutated patients (n = 38, mOS = 8.03 months) or BRAFV600/NRASwt patients (n = 39, mOS = 8.26 months) the difference didn't reach statistical significance (p = 0.56). 69 patients were able to complete 4 cycles of anti-CTLA-4 treatment. Of the 24 patients treated with selected BRAF- or MEK-inhibitors, 16 patients received anti-CTLA 4 Abs following either a BRAF or MEK inhibitor with only 8 of them being able to finish 4 cycles of treatment. Based on our results, there is no difference in the median OS in patients treated with anti-CTLA-4 Abs implying that the BRAF/NRAS mutation status alone is not sufficient to predict the outcome of patients treated with anti-CTLA-4 Abs

    A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A growing body of research suggests that elevated circulating levels of glucose and insulin accelerate risk factors for a wide range of disorders. Low-risk interventions that could suppress glucose without raising insulin levels could offer significant long-term health benefits.</p> <p>Methods</p> <p>To address this issue, we conducted two sequential studies, the first with two phases. In the first phase of Study 1, baseline fasting blood glucose was measured in 20 subjects who consumed 70 grams of sucrose in water and subsequently completed capillary glucose measurements at 30, 45, 60 and 90 minutes (Control). On day-2 the same procedure was followed, but with subjects simultaneously consuming a novel formula containing l-arabinose and a trivalent patented food source of chromium (LA-Cr) (Treatment). The presence or absence of the LA-Cr was blinded to the subjects and testing technician. Comparisons of changes from baseline were made between Control and Treatment periods. In the second phase of Study 1, 10 subjects selected from the original 20 competed baseline measures of body composition (DXA), a 43-blood chemistry panel and a Quality of Life Inventory. These subjects subsequently took LA-Cr daily for 4 weeks completing daily tracking forms and repeating the baseline capillary tests at the end of each of the four weeks. In Study 2, the same procedures used in the first phase were repeated for 50 subjects, but with added circulating insulin measurements at 30 and 60 minutes from baseline.</p> <p>Results</p> <p>In both studies, as compared to Control, the Treatment group had significantly lower glucose responses for all four testing times (AUC = <it>P </it>< 0.0001). Additionally, the Treatment was significantly more effective in lowering circulating insulin after 60 minutes from baseline (AUC = <it>P </it>= < 0.01). No adverse effects were found after acute sucrose challenge or in those who consumed LA-Cr daily for four weeks.</p> <p>Conclusions</p> <p>As compared to a placebo control, consumption of a LA-Cr formula after a 70-gram sucrose challenge was effective in safely lowering both circulating glucose and insulin levels.</p> <p>Trial Registration</p> <p>Clinical Trials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT0110743">NCT0110743</a></p

    Solvation and Protonation of Coumarin 102 in Aqueous Media - a Fluorescence Spectroscopic and Theoretical Study

    Get PDF
    The ground and excited state protonation of Coumarin 102 (C102), a fluorescent probe applied frequently in heterogeneous systems with an aqueous phase, has been studied in aqueous solutions by spectroscopic experiments and theoretical calculations. For the dissociation constant of the protonated form in the ground state, was obtained from the absorption spectra, for the excited state dissociation constant was obtained from the fluorescence spectra. These values were closely reproduced by theoretical calculations via a thermodynamic cycle – the value of also by calculations via the Förster cycle - using an implicit-explicit solvation model (polarized continuum model + addition of a solvent molecule). The theoretical calculations indicated that (i) in the ground state C102 occurs primarily as a hydrogen bonded water complex, with the oxo group as the binding site, (ii) this hydrogen bond becomes stronger upon excitation; (iii) in the ground state the amino nitrogen atom, in the excited state the carboxy oxygen atom is the protonation site. A comprehensive analysis of fluorescence decay data yielded the values kpr = 3.271010 M-1 s 1 for the rate constants of excited state protonation, and kdpr = 2.78108 s-1 for the rate constant of the reverse process (kpr and kdpr were treated as independent parameters). This, considering the relatively long fluorescence lifetimes of neutral C102 (6.02 ns) and its protonated form (3.06 ns) in aqueous media, means that a quasi-equilibrium state of excited state proton transfer is reached in strongly acidic solutions

    Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG

    Get PDF
    We investigate the influence of interionic upconversion between neighboring ions in the upper laser level of Nd:YLF and Nd:YAG on population dynamics, heat generation, and thermal lensing under lasing and non-lasing conditions. It is shown that cascaded multiphonon relaxations following each upconversion process generate significant extra heat dissipation in the crystal under non-lasing compared to lasing conditions. Owing to the unfavorable temperature dependence of thermal and thermo-optical parameters, this leads, firstly, to a significant temperature increase in the rod, secondly, to strong thermal lensing with pronounced spherical aberrations and, ultimately, to rod fracture in a high-power end-pumped system. In a three-dimensional finite-element calculation, excitation densities, upconversion rates, heat generation temperature profiles, and thermal lensing are calculated. Differences in thermal lens power between non-lasing and lasing conditions up to a factor of six in Nd:YLF and up to a factor of two in Nd:YAG are experimentally observed and explained by the calculation. This results in a strong deterioration in performance when operating these systems in a Q-switched regime, as an amplifier, or on a low-gain transition. Methods to decrease the influence of interionic upconversion are discussed. It is shown that tuning of the pump wavelength can significantly alter the rod temperature

    Exogenous Stimulation of Human Intervertebral Disc Cells in 3-Dimensional Alginate Bead Culture With BMP2 and L51P: Cytocompatibility and Effects on Cell Phenotype

    Get PDF
    Objective: Spinal fusion surgery is a common treatment modality for various pathologic conditions of the spine. The bone morphogenetic protein 2 (BMP2) analogue L51P acts as a general inhibitor of BMP antagonists, whereas it shows a weak affinity for BMP type I receptor. It is suggested that L51P applied in bone disorders might prevent side effects of highly concentrated BMP dosage applications in the order of milligrams. The objective of this study was to investigate the effects of L51P and BMP2 on intervertebral disc cells (IVDCs), i.e. on nucleus pulposus cells, on annulus fibrosus cells (AFCs), and on cartilaginous endplate cells (CEPCs), respectively, in 3-dimensional (3D) culture. Methods: Low-passage primary IVDCs were cultured in 3D alginate bead culture and ex- posed to 100-ng/mL BMP2 and/or L51P for 21 days. Here, we analyzed glycosaminoglycan (GAG) and DNA content and further performed gene expression analysis for major matrix genes. Results: AFCs and cartilaginous CEPCs stimulated with each 100-ng/mL L51P and BMP2, showed a significant upregulation in GAG (AFCs: p = 0.00347 and CEPCs: p = 0.0115) and DNA production (AFCs: p = 0.0182 and CEPCs: p = 0.0179) compared to control. Conclusion: These results allow first insights into the behavior of IVDCs upon L51P stimulation

    Designing Polymers for Medical Applications

    No full text
    corecore