1,168 research outputs found

    mTOR-related cell-clearing systems in epileptic seizures, an update

    Get PDF
    Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activit

    Analytical solution of the equation of motion for a rigid domain wall in a magnetic material with perpendicular anisotropy

    Full text link
    This paper reports the solution of the equation of motion for a domain wall in a magnetic material which exhibits high magneto-crystalline anisotropy. Starting from the Landau-Lifschitz-Gilbert equation for field-induced motion, we solve the equation to give an analytical expression, which specifies the domain wall position as a function of time. Taking parameters from a Co/Pt multilayer system, we find good quantitative agreement between calculated and experimentally determined wall velocities, and show that high field uniform wall motion occurs when wall rigidity is assumed.Comment: 4 pages, 4 figure

    Simultaneous Embeddings with Few Bends and Crossings

    Full text link
    A simultaneous embedding with fixed edges (SEFE) of two planar graphs RR and BB is a pair of plane drawings of RR and BB that coincide when restricted to the common vertices and edges of RR and BB. We show that whenever RR and BB admit a SEFE, they also admit a SEFE in which every edge is a polygonal curve with few bends and every pair of edges has few crossings. Specifically: (1) if RR and BB are trees then one bend per edge and four crossings per edge pair suffice (and one bend per edge is sometimes necessary), (2) if RR is a planar graph and BB is a tree then six bends per edge and eight crossings per edge pair suffice, and (3) if RR and BB are planar graphs then six bends per edge and sixteen crossings per edge pair suffice. Our results improve on a paper by Grilli et al. (GD'14), which proves that nine bends per edge suffice, and on a paper by Chan et al. (GD'14), which proves that twenty-four crossings per edge pair suffice.Comment: Full version of the paper "Simultaneous Embeddings with Few Bends and Crossings" accepted at GD '1

    On a Tree and a Path with no Geometric Simultaneous Embedding

    Full text link
    Two graphs G1=(V,E1)G_1=(V,E_1) and G2=(V,E2)G_2=(V,E_2) admit a geometric simultaneous embedding if there exists a set of points P and a bijection M: P -> V that induce planar straight-line embeddings both for G1G_1 and for G2G_2. While it is known that two caterpillars always admit a geometric simultaneous embedding and that two trees not always admit one, the question about a tree and a path is still open and is often regarded as the most prominent open problem in this area. We answer this question in the negative by providing a counterexample. Additionally, since the counterexample uses disjoint edge sets for the two graphs, we also negatively answer another open question, that is, whether it is possible to simultaneously embed two edge-disjoint trees. As a final result, we study the same problem when some constraints on the tree are imposed. Namely, we show that a tree of depth 2 and a path always admit a geometric simultaneous embedding. In fact, such a strong constraint is not so far from closing the gap with the instances not admitting any solution, as the tree used in our counterexample has depth 4.Comment: 42 pages, 33 figure

    Mitochondrial Genome Diversity in Collembola: Phylogeny, Dating and Gene Order

    Get PDF
    Collembola (springtails) are an early diverging class of apterygotes, and mark the first substantial radiation of hexapods on land. Despite extensive work, the relationships between major collembolan lineages are still debated and, apart from the Early Devonian fossil Rhyniella praecursor, which demonstrates their antiquity, the time frame of springtail evolution is unknown. In this study, we sequence two new mitochondrial genomes and reanalyze all known Collembola mt-genomes, including selected metagenomic data, to produce an improved phylogenetic hypothesis for the group, develop a tentative time frame for their differentiation, and provide a comprehensive overview of gene order diversity. Our analyses support most taxonomically recognized entities. We find support for an Entomobryomorpha + Symphypleona clade, while the position of Neelipleona could not be assessed with confidence. A Silurian time frame for their basal diversification is recovered, with an indication that divergence times may be fairly old overall. The distribution of mitochondrial gene order indicates the pancrustacean arrangement as plesiomorphic and dominant in the group, with the exception of the family Onychiuridae. We distinguished multiple instances of different arrangements in individual genomes or small clusters. We further discuss the opportunities and drawbacks associated with the inclusion of metagenomic data in a classic study on mitochondrial genome diversity

    Bone marrow-derived cells can acquire cardiac stem cells properties in damaged heart

    Get PDF
    Experimental data suggest that cell-based therapies may be useful for cardiac regeneration following ischaemic heart disease. Bone marrow (BM) cells have been reported to contribute to tissue repair after myocardial infarction (MI) by a variety of humoural and cellular mechanisms. However, there is no direct evidence, so far, that BM cells can generate cardiac stem cells (CSCs). To investigate whether BM cells contribute to repopulate the Kit+ CSCs pool, we transplanted BM cells from transgenic mice, expressing green fluorescent protein under the control of Kit regulatory elements, into wild-type irradiated recipients. Following haematological reconstitution and MI, CSCs were cultured from cardiac explants to generate 'cardiospheres', a microtissue normally originating in vitro from CSCs. These were all green fluorescent (i.e. BM derived) and contained cells capable of initiating differentiation into cells expressing the cardiac marker Nkx2.5. These findings indicate that, at least in conditions of local acute cardiac damage, BM cells can home into the heart and give rise to cells that share properties of resident Kit+ CSCs

    The role of allergoids in allergen immunotherapy: from injective to sublingual route

    Get PDF
    SummaryAllergen immunotherapy (AIT) is aimed at inducing tolerance to allergens, such as pollens, dust mites or moulds, by administering increasing amounts of the causative allergen through subcutaneous or sublingual route. The evidence of efficacy of AIT is high, but the issue of safety, especially for the subcutaneous route, must be taken into account. The search for safer AIT products aimed at reducing the allergenicity, and thus adverse reactions, while maintaining the immunogenicity, that is essential for effectiveness, gave rise to the introduction of allergoids, which were conceived to fulfill these requirements. In the first allergoids glutaraldehyde or formaldehyde were used as cross-linking agent to polymerize allergens, this resulting in high molecular weight molecules (200,000 to 20,000,000 daltons) which were significantly less allergenic due to a decreased capacity to bridge IgE on its specific receptor, while maintaining the immunogenicity and thus the therapeutic efficacy. In recent years further agents, acting as adjuvants, such as L-tyrosine, monophosphoryl lipid A, aluminium hydroxide, were added to polymerized extracts. Moreover, a carbamylated monomeric allergoid was developed and, once adsorbed on calcium phosphate matrix, used by subcutaneous route. At the same time, in virtue of its peculiarities, such allergoid revealed particularly suitable for sublingual administration. A lot of clinical evidences show that it is well tolerated, largely safer and effective. Importantly, the higher safety of allergoids allows faster treatment schedules that favor patient compliance and, according to pharmaco-economic studies, they might be more cost-effective than other AIT options

    Control of skeletal muscle atrophy associated to cancer or corticosteroids by ceramide kinase

    Get PDF
    Apart from cytokines and chemokines, sphingolipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide 1-phosphate (C1P), contribute to cancer and inflammation. Cancer, as well as other inflammatory conditions, are associated with skeletal muscle (SkM) atrophy, which is characterized by the unbalance between protein synthesis and degradation. Although the signaling pathways involved in SkM mass wasting are multiple, the regulatory role of simple sphingolipids is limited. Here, we report the impairment of ceramide kinase (CerK), the enzyme responsible for the phosphorylation of ceramide to C1P, associated with the accomplishment of atrophic phenotype in various experimental models of SkM atrophy: in vivo animal model bearing the C26 adenocarcinoma or Lewis lung carcinoma tumors, in human and murine SkM cells treated with the conditioned medium obtained from cancer cells or with the glucocorticoid dexamethasone. Notably, we demonstrate in all the three experimental approaches a drastic decrease of CerK expression. Gene silencing of CerK promotes the up-regulation of atrogin-1/MAFbx expression, which was also observed after cell treatment with C8-ceramide, a biologically active ceramide analogue. Conversely, C1P treatment significantly reduced the corticosteroid’s effects. Altogether, these findings provide evidence that CerK, acting as a molecular modulator, may be a new possible target for SkM mass regulation associated with cancer or corticosteroids

    The multi‐faceted effect of curcumin in glioblastoma from rescuing cell clearance to autophagy‐independent effects

    Get PDF
    The present review focuses on the multi‐faceted effects of curcumin on the neurobiology glioblastoma multiforme (GBM), with a special emphasis on autophagy (ATG)‐dependent molecular pathways activated by such a natural polyphenol. This is consistent with the effects of curcumin in a variety of experimental models of neurodegeneration, where the molecular events partially overlap with GBM. In fact, curcumin broadly affects various signaling pathways, which are similarly affected in cell degeneration and cell differentiation. The antitumoral effects of curcumin include growth inhibition, cell cycle arrest, anti‐migration and anti‐invasion, as well as chemo‐ and radio‐sensitizing activity. Remarkably, most of these effects rely on mammalian target of rapamycin (mTOR)‐dependent ATG induction. In addition, curcumin targets undifferentiated and highly tumorigenic GBM cancer stem cells (GSCs). When rescuing ATG with curcumin, the tumorigenic feature of GSCs is suppressed, thus counteracting GBM establishment and growth. It is noteworthy that targeting GSCs may also help overcome therapeutic resistance and reduce tumor relapse, which may lead to a significant improvement of GBM prognosis. The present review focuses on the multi‐faceted effects of curcumin on GBM neurobiology, which represents an extension to its neuroprotective efficacy
    corecore