70 research outputs found

    Serotype epidemiology and multidrug resistance patterns of Salmonella enterica infecting humans in Italy

    Get PDF
    BACKGROUND: Salmonella enterica is the zoonotic agent most frequently responsible for foodborne infections in humans worldwide. In this work the presence of S. enterica was investigated in 734 unique enteropathogenic isolates collected from human patients between 2011 and 2012. RESULTS: All Salmonella spp. isolates were subjected to serotyping and antimicrobial susceptibility testing. Isolates displaying phenotypes and antimicrobial susceptibility profiles different from the reference strains were genotipically characterized. Several plasmid-embedded resistance determinants were identified and characterized. Non-typhoidal serotypes were most frequently diagnosed; monophasic Salmonella typhimurium 1,4 [5],12:i- and S. typhimurium represented the most prevalent serovars. Five isolates displayed phenotypes with extremely reduced susceptibility to antimicrobials: we detected multidrug resistance elements belonging to Ambler class A and class C in two non-typhoidal S. enterica serovars, i.e. Rissen and monophasic S. typhimurium 1,4 [5],12:i-, and in one typhoidal serovar, i.e., Paratyphi B. These resistance determinants have been so far almost exclusively associated with non-Salmonella members of the Enterobacteriaceae family. Alarmingly, two colistin resistant Salmonella enteritidis were also found. CONCLUSIONS: This work draws the attention to the still low, but rising, percentage of multidrug resistant Salmonella isolates infecting humans in Italy. Our results suggest that prompt monitoring of Salmonella serovar dissemination and resistance to antimicrobials is highly required

    Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant\ue2\u80\u93anticoagulant equilibrium toward thrombosis

    Get PDF
    Blood coagulation is a finely regulated physiological process culminating with the factor Xa (FXa)-mediated conversion of the prothrombin (ProT) zymogen to active -thrombin (T). In the prothrombinase complex on the platelet surface, FXa cleaves ProT at Arg-271, generating the inactive precursor pre-thrombin-2 (Pre2), which is further attacked at Arg-320 \u2013Ile-321 to yield mature T. Whereas the mechanism of physiological ProT activation has been elucidated in great detail, little is known about the role of bacterial proteases, possibly released in the bloodstream during infection, in inducing blood coagulation by direct proteolytic ProT activation. This knowledge gap is particularly concerning, as bacterial infections are frequently complicated by severe coagulopathies. Here, we show that addition of subtilisin (50 nM to 2 M), a serine protease secreted by the non-pathogenic bacterium Bacillus subtilis, induces plasma clotting by proteolytically converting ProT into active Pre2, a nicked Pre2 derivative with a single cleaved Ala-470 \u2013Asn-471 bond. Notably, we found that this non-canonical cleavage at Ala-470 \u2013Asn-471 is instrumental for the onset of catalysis in Pre2, which was, however, reduced about 100 \u2013200-fold compared with T. Of note, Pre2 could generate fibrin clots from fibrinogen, either in solution or in blood plasma, and could aggregate human platelets, either isolated or in whole blood. Our findings demonstrate that alternative cleavage of ProT by proteases, even by those secreted by non-virulent bacteria such as B. subtilis, can shift the delicate procoagulant\u2013anticoagulant equilibrium toward thrombosis

    Presence, Location and Conservation of Putative G-Quadruplex Forming Sequences in Arboviruses Infecting Humans

    Get PDF
    Guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4s are found in the human genome and in the genomes of human pathogens, where they are involved in the regulation of gene expression and genome replication. G4s have been proposed as novel pharmacological targets in humans and their exploitation for antiviral therapy is an emerging research topic. Here, we report on the presence, conservation and localization of putative G4-forming sequences (PQSs) in human arboviruses. The prediction of PQSs was performed on more than twelve thousand viral genomes, belonging to forty different arboviruses that infect humans, and revealed that the abundance of PQSs in arboviruses is not related to the genomic GC content, but depends on the type of nucleic acid that constitutes the viral genome. Positive-strand ssRNA arboviruses, especially Flaviviruses, are significantly enriched in highly conserved PQSs, located in coding sequences (CDSs) or untranslated regions (UTRs). In contrast, negative-strand ssRNA and dsRNA arboviruses contain few conserved PQSs. Our analyses also revealed the presence of bulged PQSs, accounting for 17-26% of the total predicted PQSs. The data presented highlight the presence of highly conserved PQS in human arboviruses and present non-canonical nucleic acid-structures as promising therapeutic targets in arbovirus infections

    Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription

    Get PDF
    Folding of the LTR promoter into dynamic G-quadruplex conformations has been shown to suppress its transcriptional activity in HIV-1. Here we sought to identify the proteins that control the folding of this region of proviral genome by inducing/stabilizing G-quadruplex structures. The implementation of electrophorethic mobility shift assay and pull-down experiments coupled with mass spectrometric analysis revealed that the cellular protein nucleolin is able to specifically recognize G-quadruplex structures present in the LTR promoter. Nucleolin recognized with high affinity and specificity the majority, but not all the possible G-quadruplexes folded by this sequence. In addition, it displayed greater binding preference towards DNA than RNA G-quadruplexes, thus indicating two levels of selectivity based on the sequence and nature of the target. The interaction translated into stabilization of the LTR G-quadruplexes and increased promoter silencing activity; in contrast, disruption of nucleolin binding in cells by both siRNAs and a nucleolin binding aptamer greatly increased LTR promoter activity. These data indicate that nucleolin possesses a specific and regulated activity toward the HIV-1 LTR promoter, which is mediated by G-quadruplexes. These observations provide new essential insights into viral transcription and a possible low mutagenic target for antiretroviral therapy

    Prevalence of aac(6')-Ib-cr plasmid-mediated and chromosome-encoded fluoroquinolone resistance in Enterobacteriaceae in Italy

    Get PDF
    The spread of aac(6')-Ib-cr plasmid-mediated quinolone resistance determinants was evaluated in 197 enterobacterial isolates recovered in an Italian teaching hospital. The aac(6')-Ib-cr gene was found exclusively in Escherichia coli strains. The gene was located on a plasmid which presented additional ESBL genes. Most of the clinical strains were clonally related and displayed three point mutations at the topoisomerase level which conferred high resistance to fluoroquinolones

    Formation of a Unique Cluster of G-Quadruplex Structures in the HIV-1 nef Coding Region: Implications for Antiviral Activity

    Get PDF
    G-quadruplexes are tetraplex structures of nucleic acids that can form in G-rich sequences. Their presence and functional role have been established in telomeres, oncogene promoters and coding regions of the human chromosome. In particular, they have been proposed to be directly involved in gene regulation at the level of transcription. Because the HIV-1 Nef protein is a fundamental factor for efficient viral replication, infectivity and pathogenesis in vitro and in vivo, we investigated G-quadruplex formation in the HIV-1 nef gene to assess the potential for viral inhibition through G-quadruplex stabilization. A comprehensive computational analysis of the nef coding region of available strains showed the presence of three conserved sequences that were uniquely clustered. Biophysical testing proved that G-quadruplex conformations were efficiently stabilized or induced by G-quadruplex ligands in all three sequences. Upon incubation with a G-quadruplex ligand, Nef expression was reduced in a reporter gene assay and Nef-dependent enhancement of HIV-1 infectivity was significantly repressed in an antiviral assay. These data constitute the first evidence of the possibility to regulate HIV-1 gene expression and infectivity through G-quadruplex targeting and therefore open a new avenue for viral treatment. © 2013 Perrone et al

    Synthesis, Binding and Antiviral Properties of Potent Core-Extended Naphthalene Diimides Targeting the HIV-1 Long Terminal Repeat Promoter G-Quadruplexes

    Get PDF
    We have previously reported that stabilization of the G-quadruplex structures in the HIV-1 long terminal repeat (LTR) promoter suppresses viral transcription. Here we sought to develop new G-quadruplex ligands to be exploited as antiviral compounds by enhancing binding toward the viral G-quadruplex structures. We synthesized naphthalene diimide derivatives with a lateral expansion of the aromatic core. The new compounds were able to bind/stabilize the G-quadruplex to a high extent, and some of them displayed clear-cut selectivity toward the viral G-quadruplexes with respect to the human telomeric G-quadruplexes. This feature translated into low nanomolar anti-HIV-1 activity toward two viral strains and encouraging selectivity indexes. The selectivity depended on specific recognition of LTR loop residues; the mechanism of action was ascribed to inhibition of LTR promoter activity in cells. This is the first example of G-quadruplex ligands that show increased selectivity toward the viral G-quadruplexes and display remarkable antiviral activity

    A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription

    Get PDF
    I-motifs are non-canonical nucleic acids structures characterized by intercalated H-bonds between hemi-protonated cytosines. Evidence on the involvement of i-motif structures in the regulation of cellular processes in human cells has been consistently growing in the recent years. However, i-motifs within non-human genomes have never been investigated. Here, we report the characterization of i-motifs within the long terminal repeat (LTR) promoter of the HIV-1 proviral genome. Biophysical and biochemical analysis revealed formation of a predominant i-motif with an unprecedented loop composition. One-dimensional nuclear magnetic resonance investigation demonstrated formation of three G-C H-bonds in the long loop, which likely improve the structure overall stability. Pull-down experiments combined with mass spectrometry and protein crosslinking analysis showed that the LTR i-motif is recognized by the cellular protein hnRNP K, which induced folding at physiological conditions. In addition, hnRNP K silencing resulted in an increased LTR promoter activity, confirming the ability of the protein to stabilize the i-motif-forming sequence, which in turn regulates the LTR-mediated HIV-1 transcription. These findings provide new insights into the complexity of the HIV-1 virus and lay the basis for innovative antiviral drug design, based on the possibility to selectively recognize and target the HIV-1 LTR i-motif

    G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide

    Get PDF
    G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in organisms. G-quadruplexes are present in eukaryotes, prokaryotes, and viruses. In the latter, mounting evidence indicates their key biological activity. Since data on viruses are scattered, we here present a comprehensive analysis of potential quadruplex-forming sequences (PQS) in the genome of all known viruses that can infect humans. We show that occurrence and location of PQSs are features characteristic of each virus class and family. Our statistical analysis proves that their presence within the viral genome is orderly arranged, as indicated by the possibility to correctly assign up to two-thirds of viruses to their exact class based on the PQS classification. For each virus we provide: i) the list of all PQS present in the genome (positive and negative strands), ii) their position in the viral genome, iii) the degree of conservation among strains of each PQS in its genome context, iv) the statistical significance of PQS abundance. This information is accessible from a database to allow the easy navigation of the results: http://www.medcomp.medicina.unipd.it/main_site/doku.php?id=g4virus. The availability of these data will greatly expedite research on G-quadruplex in viruses, with the possibility to accelerate finding therapeutic opportunities to numerous and some fearsome human diseases
    • 

    corecore