64 research outputs found

    Detectable anthropogenic changes in daily-scale circulations driving summer rainfall shifts over eastern China

    Get PDF
    Wetting in the south while drying in the north during the last few decades constitutes the well-known ‘southern flood–northern drought’ (SFND) precipitation pattern over eastern China. The fingerprint of anthropogenic influence on this dipole pattern of regional precipitation trends has not been confirmed, especially for forced changes in relevant dynamics at the synoptic scale. Using a process-based approach involving model experiments both with and without anthropogenic inputs, it is demonstrated that the occurrences of daily circulation patterns (CPs) governing precipitation over eastern China during 1961–2013 have been altered by human influence. Due to anthropogenic forcing, CPs favoring SFND have become more likely to occur at the expense of CPs unfavorable to SFND. Regression analysis shows that changes recorded in the occurrence of CPs from the factual simulations could explain a large part of the precipitation trends over eastern China. CP frequencies driven by purely natural forcing do not reproduce this dipole pattern nor the inferred magnitude of precipitation trends over eastern China. These results suggest that human influence has played a critical role in shaping the contrasting north–south precipitation trends

    Event attribution of Parnaíba River floods in Northeastern Brazil

    Get PDF
    The climate modeling techniques of event attribution enable systematic assessments of the extent that anthropogenic climate change may be altering the probability or magnitude of extreme events. In the consecutive years of 2018, 2019, and 2020, rainfalls caused repeated flooding impacts in the lower Parnaíba River in Northeastern Brazil. We studied the effect that alterations in precipitation resulting from human influences on the climate had on the likelihood of flooding using two ensembles of the HadGEM3-GA6 atmospheric model: one driven by both natural and anthropogenic forcings; and the other driven only by natural atmospheric forcings, with anthropogenic changes removed from sea surface temperatures and sea ice patterns. We performed hydrological modeling to base our assessments on the peak annual streamflow. The change in the likelihood of flooding was expressed in terms of the ratio between probabilities of threshold exceedance estimated for each model ensemble. With uncertainty estimates at the 90% confidence level, the median (5% 95%) probability ratio at the threshold for flooding impacts in the historical period (1982–2013) was 1.12 (0.97 1.26), pointing to a marginal contribution of anthropogenic emissions by about 12%. For the 2018, 2019, and 2020 events, the median (5% 95%) probability ratios at the threshold for flooding impacts were higher at 1.25 (1.07 1.46), 1.27 (1.12 1.445), and 1.37 (1.19 1.59), respectively; indicating that precipitation change driven by anthropogenic emissions has contributed to the increase of likelihood of these events by about 30%. However, there are other intricate hydrometeorological and anthropogenic processes undergoing long-term changes that affect the flood hazard in the lower Parnaíba River. Trend and flood frequency analyses performed on observations showed a nonsignificant long-term reduction of annual peak flow, likely due to decreasing precipitation from natural climate variability and increasing evapotranspiration and flow regulation

    A cross-national mixed-method study of reality pedagogy

    Get PDF
    This mixed-methods cross-national study investigated the effectiveness of reality pedagogy (an approach in which teachers become part of students’ activities, practices and rituals) in terms of changes in student perceptions of their learning environment and attitudes towards science. A questionnaire was administered to 142 students in grades 8–10 in the Bronx, New York City and Dresden, Germany. The questionnaire combines learning environment scales from the Constructivist Learning Environment Survey and the What Is Happening In this Class? Questionnaire with attitude scales from the Test of Science-Related Attitudes. Student interviews were used to support questionnaire findings. Quantitative data analyses revealed that reality pedagogy had a greater impact on students in the Bronx than in Dresden, with qualitative data clarifying differences in how reality pedagogy was enacted in each geographic area. Overall, our findings add to the body of evidence concerning the effectiveness of reality pedagogy as an approach to teaching and learning science across a variety of contexts. © 2016 Springer Science+Business Media Dordrech
    corecore