67 research outputs found

    Turbulent amplification of magnetic field driven by dynamo effect at rippled shocks

    Full text link
    We derive analytically the vorticity generated downstream of a two-dimensional rippled hydromagnetic shock neglecting fluid viscosity and resistivity. The growth of the turbulent component of the downstream magnetic field is driven by the vortical eddies motion. We determine an analytic time-evolution of the magnetic field amplification at shocks, so far described only numerically, until saturation occurs due to seed-field reaction to field lines whirling. The explicit expression of the amplification growth rate and of the non-linear field back-reaction in terms of the parameters of shock and interstellar density fluctuations is derived from MHD jump conditions at rippled shocks. A magnetic field saturation up to the order of milligauss and a short-time variability in the XX-ray observations of supernova remnants can be obtained by using reasonable parameters for the interstellar turbulence.Comment: 9 pages, 4 figures, The Astrophyical Journal in pres

    Bi-directional streaming of particles accelerated at the STEREO-A shock on 9th March 2008

    Full text link
    We present an interpretation of anisotropy and intensity of supra-thermal ions near a fast quasi-perpendicular reverse shock measured by Solar Terrestrial Relations Observatory Ahead (ST-A) on 2008 March 9th. The measured intensity profiles of the supra-thermal particles exhibit an enhancement, or "spike", at the time of the shock arrival and pitch-angle anisotropies before the shock arrival are bi-modal, jointly suggesting trapping of near-scatter-free ions along magnetic field lines that intersect the shock at two locations. We run test-particle simulations with pre-existing upstream magnetostatic fluctuations advected across the shock. The measured bi-modal upstream anisotropy, the nearly field-aligned anisotropies up to ~15 minutes upstream of the shock, as well as the "pancake-like" anisotropies up to ~10 minutes downstream of the shock are well reproduced by the simulations. These results, in agreement with earlier works, suggest a dominant role of the large-scale structure (100s of supra-thermal proton gyroradii) of the magnetic field in forging the early-on particle acceleration at shocks.Comment: 7 pages, 4 figures, MNRAS in pres

    GRB 980425, SN1998bw and the EMBH model

    Full text link
    The EMBH model, previously developed using GRB 991216 as a prototype, is here applied to GRB 980425. We fit the luminosity observed in the 40-700 keV, 2-26 keV and 2-10 keV bands by the BeppoSAX satellite. In addition we present a novel scenario in which the supernova SN1998bw is the outcome of an ``induced gravitational collapse'' triggered by GRB 980425, in agreement with the GRB-Supernova Time Sequence (GSTS) paradigm (Ruffini et al. 2001c). A further outcome of this astrophysically exceptional sequence of events is the formation of a young neutron star generated by the SN1998bw event. A coordinated observational activity is recommended to further enlighten the underlying scenario of this most unique astrophysical system.Comment: 10 pages, 3 figures, in the Proceedings of the 34th COSPAR scientific assembly, Elsevier. Fixed some typos in this new versio

    The Stellar CME-flare relation: What do historic observations reveal?

    Full text link
    Solar CMEs and flares have a statistically well defined relation, with more energetic X-ray flares corresponding to faster and more massive CMEs. How this relation extends to more magnetically active stars is a subject of open research. Here, we study the most probable stellar CME candidates associated with flares captured in the literature to date, all of which were observed on magnetically active stars. We use a simple CME model to derive masses and kinetic energies from observed quantities, and transform associated flare data to the GOES 1--8~\AA\ band. Derived CME masses range from ∼1015\sim 10^{15} to 102210^{22}~g. Associated flare X-ray energies range from 103110^{31} to 103710^{37}~erg. Stellar CME masses as a function of associated flare energy generally lie along or below the extrapolated mean for solar events. In contrast, CME kinetic energies lie below the analogous solar extrapolation by roughly two orders of magnitude, indicating approximate parity between flare X-ray and CME kinetic energies. These results suggest that the CMEs associated with very energetic flares on active stars are more limited in terms of the ejecta velocity than the ejecta mass, possibly because of the restraining influence of strong overlying magnetic fields and stellar wind drag. Lower CME kinetic energies and velocities present a more optimistic scenario for the effects of CME impacts on exoplanets in close proximity to active stellar hosts.Comment: 23 pages, 3 tables, 4 figures, accepted by Ap

    X-ray Measurements of the Particle Acceleration Properties at Inward Shocks in Cassiopeia A

    Full text link
    We present new evidence that the bright non-thermal X-ray emission features in the interior of the Cassiopeia A supernova remnant (SNR) are caused by inward moving shocks based on Chandra and NuSTAR observations. Several bright inward-moving filaments were identified using monitoring data taken by Chandra in 2000-2014. These inward-moving shock locations are nearly coincident with hard X-ray (15-40 keV) hot spots seen by NuSTAR. From proper motion measurements, the transverse velocities were estimated to be in the range ∼\sim2,100-3,800 km s−1^{-1} for a distance of 3.4 kpc. The shock velocities in the frame of the expanding ejecta reach values of ∼\sim5,100-8,700 km s−1^{-1}, slightly higher than the typical speed of the forward shock. Additionally, we find flux variations (both increasing and decreasing) on timescales of a few years in some of the inward-moving shock filaments. The rapid variability timescales are consistent with an amplified magnetic field of B∼B \sim 0.5-1 mG. The high speed and low photon cut-off energy of the inward-moving shocks are shown to imply a particle diffusion coefficient that departs from the Bohm regime (k0=D0/D0,Bohm∼k_0 = D_0/D_{\rm 0,Bohm} \sim 3-8) for the few simple physical configurations we consider in this study. The maximum electron energy at these shocks is estimated to be ∼\sim8-11 TeV, smaller than the values of ∼\sim15-34 TeV inferred for the forward shock. Cassiopeia A is dynamically too young for its reverse shock to appear to be moving inward in the observer frame. We propose instead that the inward-moving shocks are a consequence of the forward shock encountering a density jump of ≳\gtrsim 5-8 in the surrounding material.Comment: 16 pages, 8 figures, accepted for publication in Ap
    • …
    corecore