32 research outputs found

    Potential Use of Tea Tree Oil as a Disinfectant Agent against Coronaviruses: A Combined Experimental and Simulation Study

    Get PDF
    : The COVID-19 pandemic has highlighted the relevance of proper disinfection procedures and renewed interest in developing novel disinfectant materials as a preventive strategy to limit SARS-CoV-2 contamination. Given its widely known antibacterial, antifungal, and antiviral properties, Melaleuca alternifolia essential oil, also named Tea tree oil (TTO), is recognized as a potential effective and safe natural disinfectant agent. In particular, the proposed antiviral activity of TTO involves the inhibition of viral entry and fusion, interfering with the structural dynamics of the membrane and with the protein envelope components. In this study, for the first time, we demonstrated the virucidal effects of TTO against the feline coronavirus (FCoVII) and the human coronavirus OC43 (HCoV-OC43), both used as surrogate models for SARS-CoV-2. Then, to atomistically uncover the possible effects exerted by TTO compounds on the outer surface of the SARS-CoV-2 virion, we performed Gaussian accelerated Molecular Dynamics simulations of a SARS-CoV-2 envelope portion, including a complete model of the Spike glycoprotein in the absence or presence of the three main TTO compounds (terpinen-4-ol, γ-terpinene, and 1,8-cineole). The obtained results allowed us to hypothesize the mechanism of action of TTO and its possible use as an anti-coronavirus disinfectant agent

    ACE2 expression is related to the interferon response in airway epithelial cells but is that functional for SARS-CoV-2 entry?

    Get PDF
    In vitro interferon (IFN)α treatment of primary human upper airway basal cells has been shown to drive ACE2 expression, the receptor of SARS-CoV-2. The protease furin is also involved in mediating SARS‐CoV‐2 and other viral infections, although its association with early IFN response has not been evaluated yet. In order to assess the in vivo relationship between ACE2 and furin expression and the IFN response in nasopharyngeal cells, we first examined ACE2 and furin levels and their correlation with the well-known marker of IFNs’ activation, ISG15, in children (n = 59) and adults (n = 48), during respiratory diseases not caused by SARS-CoV-2. A strong positive correlation was found between ACE2 expression, but not of furin, and ISG15 in all patients analyzed. In addition, type I and III IFN stimulation experiments were performed to examine the IFN-mediated activation of ACE2 isoforms (full-length and truncated) and furin in epithelial cell lines. Following all the IFNs treatments, only the truncated ACE2 levels, were upregulated significantly in the A549 and Calu3 cells, in particular by type I IFNs. If confirmed in vivo following IFNs’ activation, the induction of the truncated ACE2 isoform only would not enhance the risk of SARS‐CoV‐2 infection in the respiratory tract

    SARS-CoV-2 Entry Genes Expression in Relation with Interferon Response in Cystic Fibrosis Patients

    Get PDF
    The expression rate of SARS-CoV-2 entry genes, angiotensin-converting enzyme 2 (ACE2), the main viral receptor and the proteases, furin and transmembrane serine protease 2 (TMPRSS2) in cystic fibrosis (CF) individuals is poorly known. Hence, we examined their levels in upper respiratory samples of CF patients (n = 46) and healthy controls (n = 45). Moreover, we sought to understand the interplay of type I interferon (IFN-I) with ACE2, furin and TMPRSS2 by evaluating their gene expression with respect to ISG15, a well-known marker of IFN activation, in upper respiratory samples and after ex vivo IFNβ exposure. Lower ACE2 levels and trends toward the reduction of furin and TMPRSS2 were found in CF patients compared with the healthy controls; decreased ACE2 amounts were also detected in CF individuals with pancreatic insufficiency and in those receiving inhaled antibiotics. Moreover, there was a strong positive correlation between ISG15 and ACE2 levels. However, after ex vivo IFNβ stimulation of nasopharyngeal cells, the truncated isoform (dACE2), recently demonstrated as the IFN stimulated one with respect to the full-length isoform (flACE2), slightly augmented in cells from CF patients whereas in those from healthy donors, dACE2 levels showed variable levels of upregulation. An altered expression of SARS-COV-2 entry genes and a poor responsiveness of dACE2 to IFN-I stimulation might be crucial in the diffusion of SARS-CoV-2 infection in CF

    How future surgery will benefit from SARS-COV-2-related measures: a SPIGC survey conveying the perspective of Italian surgeons

    Get PDF
    COVID-19 negatively affected surgical activity, but the potential benefits resulting from adopted measures remain unclear. The aim of this study was to evaluate the change in surgical activity and potential benefit from COVID-19 measures in perspective of Italian surgeons on behalf of SPIGC. A nationwide online survey on surgical practice before, during, and after COVID-19 pandemic was conducted in March-April 2022 (NCT:05323851). Effects of COVID-19 hospital-related measures on surgical patients' management and personal professional development across surgical specialties were explored. Data on demographics, pre-operative/peri-operative/post-operative management, and professional development were collected. Outcomes were matched with the corresponding volume. Four hundred and seventy-three respondents were included in final analysis across 14 surgical specialties. Since SARS-CoV-2 pandemic, application of telematic consultations (4.1% vs. 21.6%; p < 0.0001) and diagnostic evaluations (16.4% vs. 42.2%; p < 0.0001) increased. Elective surgical activities significantly reduced and surgeons opted more frequently for conservative management with a possible indication for elective (26.3% vs. 35.7%; p < 0.0001) or urgent (20.4% vs. 38.5%; p < 0.0001) surgery. All new COVID-related measures are perceived to be maintained in the future. Surgeons' personal education online increased from 12.6% (pre-COVID) to 86.6% (post-COVID; p < 0.0001). Online educational activities are considered a beneficial effect from COVID pandemic (56.4%). COVID-19 had a great impact on surgical specialties, with significant reduction of operation volume. However, some forced changes turned out to be benefits. Isolation measures pushed the use of telemedicine and telemetric devices for outpatient practice and favored communication for educational purposes and surgeon-patient/family communication. From the Italian surgeons' perspective, COVID-related measures will continue to influence future surgical clinical practice

    Chapter 15 MicroRNAs and the immune system

    No full text
    MicroRNAs (miRNAs/miRs) also known as small noncoding RNAs have emerged as crucial regulators in the modulation of the expression of multiple target genes at post-transcriptional level. Accumulating studies have provided compelling evidence that a wide range of miRNAs constitute an integrated part of the regulatory networks of immune response. Also, miRNAs contribute to normal immune system development and function. In particular, miRNAs can tightly regulate innate immune response by targeting key signaling components of inflammatory shapes such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and type I-III interferon (IFN-I-III) pathways. Moreover, they can finely modulate distinct immune signaling pathways involved in the T and B cell development, differentiation, tolerance (central and peripheral), and function. Taking these considerations into account, this chapter aims to describe current progress in miRNA research and to describe how these small noncoding RNAs can affect different innate and adaptive immune processes

    Identification of Breast Cancer Subtype-Specific Biomarkers by Integrating Copy Number Alterations and Gene Expression Profiles

    No full text
    Background and Objectives: Breast cancer is a heterogeneous disease categorized into four subtypes. Previous studies have shown that copy number alterations of several genes are implicated with the development and progression of many cancers. This study evaluates the effects of DNA copy number alterations on gene expression levels in different breast cancer subtypes. Materials and Methods: We performed a computational analysis integrating copy number alterations and gene expression profiles in 1024 breast cancer samples grouped into four molecular subtypes: luminal A, luminal B, HER2, and basal. Results: Our analyses identified several genes correlated in all subtypes such as KIAA1967 and MCPH1. In addition, several subtype-specific genes that showed a significant correlation between copy number and gene expression profiles were detected: SMARCB1, AZIN1, MTDH in luminal A, PPP2R5E, APEX1, GCN5 in luminal B, TNFAIP1, PCYT2, DIABLO in HER2, and FAM175B, SENP5, SCAF1 in basal subtype. Conclusions: This study showed that computational analyses integrating copy number and gene expression can contribute to unveil the molecular mechanisms of cancer and identify new subtype-specific biomarkers

    Splicing Mutations Impairing CDKL5 Expression and Activity Can be Efficiently Rescued by U1snRNA-Based Therapy

    Get PDF
    Mutations in the CDKL5 gene lead to an incurable rare neurological condition characterized by the onset of seizures in the first weeks of life and severe intellectual disability. Replacement gene or protein therapies could represent intriguing options, however, their application may be inhibited by the recent demonstration that CDKL5 is dosage sensitive. Conversely, correction approaches acting on pre-mRNA splicing would preserve CDKL5 physiological regulation. Since ~15% of CDKL5 pathogenic mutations are candidates to affect splicing, we evaluated the capability of variants of the spliceosomal U1 small nuclear RNA (U1snRNA) to correct mutations affecting +1 and +5 nucleotides at the 5' donor splice site and predicted to cause exon skipping. Our results show that CDKL5 minigene variants expressed in mammalian cells are a valid approach to assess CDKL5 splicing pattern. The expression of engineered U1snRNA effectively rescued mutations at +5 but not at the +1 nucleotides. Importantly, we proved that U1snRNA-mediated splicing correction fully restores CDKL5 protein synthesis, subcellular distribution and kinase activity. Eventually, by correcting aberrant splicing of an exogenously expressed splicing-competent CDKL5 transgene, we provided insights on the morphological rescue of CDKL5 null neurons, reporting the first proof-of-concept of the therapeutic value of U1snRNA-mediated CDKL5 splicing correction

    Not Just Loss-of-Function Variations: Identification of a Hypermorphic Variant in a Patient With a CDKL5 Missense Substitution

    Get PDF
    Background and objectives: CDKL5 deficiency disorder (CDD) is a neurodevelopmental encephalopathy characterized by early-onset epilepsy and impaired psychomotor development. Variations in the X-linked CDKL5 gene coding for a kinase cause CDD. Molecular genetics has proved that almost all pathogenic missense substitutions localize in the N-terminal catalytic domain, therefore underlining the importance for brain development and functioning of the kinase activity. CDKL5 also features a long C-terminal domain that acts as negative regulator of the enzymatic activity and modulates its subcellular distribution. CDD is generally attributed to loss-of-function variations, whereas the clinical consequences of increased CDKL5 activity remain uncertain. We have identified a female patient characterized by mild epilepsy and neurologic symptoms, harboring a novel c.2873C>G nucleotide substitution, leading to the missense variant p.(Thr958Arg). To increase our comprehension of genetic variants in CDKL5-associated neurologic disorders, we have characterized the molecular consequences of the identified substitution. Methods: MRI and video EEG telemetry were used to describe brain activity and capture seizure. The Bayley III test was used to evaluate the patient development. Reverse transcriptase PCR was used to analyze whether the identified nucleotide variant affects messenger RNA stability and/or splicing. The X chromosome inactivation pattern was analyzed determining the DNA methylation status of the androgen receptor (AR) gene and by sequencing of expressed alleles. Western blotting was used to investigate whether the novel Thr958Arg substitution affects the stability and/or enzymatic activity of CDKL5. Immunofluorescence was used to define whether CDKL5 subcellular distribution is affected by the Thr958Arg substitution. Results: Our data suggested that the proband tends toward a skewed X chromosome inactivation pattern in favor of the novel variant. The molecular investigation revealed that the p.(Thr958Arg) substitution leads to a significant increase in the autophosphorylation of both the TEY motif and residue Tyr171 of CDKL5, as well as in the phosphorylation of the target protein MAP1S, indicating an hyperactivation of CDKL5. This occurs without evidently affecting the kinase subcellular distribution. Discussion: Our data provide a strong indication that the c.2873C>G nucleotide substitution represents an hypermorphic pathogenic variation of CDKL5, therefore highlighting the importance of a tight control of CDKL5 activity in the brain

    Potential IFNγ Modulation of Inflammasome Pathway in Chlamydia trachomatis Infected Synovial Cells

    No full text
    Following a Chlamydia trachomatis infection, the host immune response is characterized by its recognition via Toll-like and Nod-like Receptors, and the subsequent activation of interferon (IFN)-γ-mediated signaling pathways. Recently, the inflammasome-mediated host cell response has emerged to play a role in the physiopathology of C. trachomatis infection. Here we investigated, for the first time, the interaction of IFN-γ and inflammasome in an in vitro model of C. trachomatis-infected primary human synovial cells. Chlamydial replication as well as the expression of caspase-1, IL-1β, as well as IL-18 and IL-6, were assayed. Our results demonstrated the inhibitory activity of IFN-γ by interfering with the inflammasome network through the downregulation of caspase-1 mRNA expression. In addition, the ability of C. trachomatis to hinder the inflammasome pathway favoring its intracellular survival within synovial cells, was observed. Overall, our data suggest a potential mechanism of immune evasion by C. trachomatis in synovial cells, that may be contested by IFN-γ
    corecore