6 research outputs found

    Differences in Stability of Viral and Viral-Cellular Fusion Transcripts in HPV-Induced Cervical Cancers

    Get PDF
    HPV-DNA integration results in dysregulation of viral oncogene expression. Because viral-cellular fusion transcripts inherently lack the viral AU-rich elements of the 3’UTR, they are considered to be more stable than episome-derived transcripts. The aim of this study is to provide formal proof for this assumption by comparing the stability of viral early transcripts derived from episomal and integrated HPV16 DNA, respectively. Full-length cDNA of three fusion transcripts comprising viral and cellular sequences in sense orientation were amplified and cloned into the adeno-viral-vector pAd/CMV/V5-DEST. The most abundant HPV16 oncogene transcript E6*I-E7-E1vE4-E5 with and without 3’UTR, served as reference and control, respectively. Human primary keratinocytes were transduced using high titer virus stocks. qRT-PCR was performed to determine mRNA stability in relation to GAPDH in the presence of actinomycin-D. In four independent transduction experiments, all three viral-cellular fusion transcripts were significantly more stable compared to the episome-derived reference. Among the three viral-cellular fusion transcripts the most stable transcript was devoid of the instability core motif “AUUUA”. Unexpectedly, there was no significant difference in the stability between the episome-derived transcripts either with or without 3’UTR, indicating that the AU-rich elements of the 3’UTR are not contributing to RNA stability. Instead, the three “AUUUA” motifs located in the untranslated region between the viral E4 and E5 genes may be responsible for the instability. This is the first report showing that authentic viral-cellular fusion transcripts are more stable than episome-derived transcripts. The longer half-life of the fusion transcripts may result in increased levels of viral oncoproteins and thereby drive the carcinogenic process

    Differences in Stability of Viral and Viral-Cellular Fusion Transcripts in HPV-Induced Cervical Cancers

    No full text
    HPV-DNA integration results in dysregulation of viral oncogene expression. Because viral-cellular fusion transcripts inherently lack the viral AU-rich elements of the 3’UTR, they are considered to be more stable than episome-derived transcripts. The aim of this study is to provide formal proof for this assumption by comparing the stability of viral early transcripts derived from episomal and integrated HPV16 DNA, respectively. Full-length cDNA of three fusion transcripts comprising viral and cellular sequences in sense orientation were amplified and cloned into the adeno-viral-vector pAd/CMV/V5-DEST. The most abundant HPV16 oncogene transcript E6*I-E7-E1vE4-E5 with and without 3’UTR, served as reference and control, respectively. Human primary keratinocytes were transduced using high titer virus stocks. qRT-PCR was performed to determine mRNA stability in relation to GAPDH in the presence of actinomycin-D. In four independent transduction experiments, all three viral-cellular fusion transcripts were significantly more stable compared to the episome-derived reference. Among the three viral-cellular fusion transcripts the most stable transcript was devoid of the instability core motif “AUUUA”. Unexpectedly, there was no significant difference in the stability between the episome-derived transcripts either with or without 3’UTR, indicating that the AU-rich elements of the 3’UTR are not contributing to RNA stability. Instead, the three “AUUUA” motifs located in the untranslated region between the viral E4 and E5 genes may be responsible for the instability. This is the first report showing that authentic viral-cellular fusion transcripts are more stable than episome-derived transcripts. The longer half-life of the fusion transcripts may result in increased levels of viral oncoproteins and thereby drive the carcinogenic process

    Minimization of nonlinearities in nano electrostatic drive actuators using validated coupled-field simulation

    No full text
    A recently introduced new CMOS compatible actuator class, called nano electrostatic drive (NED), uses electrostatic actuation to provide significant deflections of elastic structures. The behavior of such actuators can be dominated by nonlinear phenomena, if the nonlinearities are not understood and not considered in the design. One of the main nonlinearity sources is the electrostatic actuation, which results in the well-known instability named pull-in. Additionally, due to large deflections provided by NED technology, stress stiffening and large deformation significantly influence the system, shifting the eigenfrequencies, altering the pull-in voltage, or even introducing geometrical buckling. All these effects together characterize static and dynamic behavior and can be tailored to partially counterbalance each-other by specific designs. In following, we use finite element method (FEM) to analyze the static and dynamic behavior of MEMS based on NED technology. Owing to coupled-field FEM technique, we observe effects like static pull-in, electromechanical eigenfrequency shift and transient phenomena in detail. The numerical results are validated during optical experiments, which supports the conclusions arose from the FEM. Finally, characterizing of the nonlinearities grants the ability to tailor and minimize them during the MEMS design process

    Deutsche S3-Leitlinie Behandlung von Angststörungen

    Full text link
    Die deutsche S3-Leitline zur Behandlung von Angststörungen (Panikstörung/Agoraphobie, generalisierte Angststörung, soziale Phobie, spezifische Phobie) bei Erwachsenen wurde unter Beratung und Moderation durch die Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) von einem Gremium erstellt, das 20 Fachverbände und andere Organisationen aus den Bereichen Psychotherapie, Psychologie, psychosomatische Medizin, Psychiatrie und Allgemeinmedizin sowie Patientenvertreter und Selbsthilfeorganisationen umfasst. Die Empfehlungen dieser Leitlinie basieren auf einer Sichtung der Evidenz der verfügbaren randomisierten klinischen Studien zu Angststörungen nach ICD/DSM und einer Synthese der Empfehlungen anderer Leitlinien
    corecore