337 research outputs found
Centrifuge and real-time hybrid testing of tunnelling beneath piles and piled buildings
Tunnels are constructed increasingly close to existing buried structures, including pile foundations. This poses a serious concern, especially for tunnels built beneath piles. Current understanding of the global tunnel-soil-pile-building interaction effects is lacking, which leads to designs which may be overly conservative or the adoption of expensive measures to protect buildings. This paper presents outcomes from 24 geotechnical centrifuge tests that aim to investigate the salient mechanisms that govern piled building response to tunnelling. Centrifuge test data include greenfield tunnelling, pile loading, and tunnelling beneath single piles and piled frames, all within sand. The global tunnel-piled frame interaction scenario is investigated using a newly developed real-time hybrid testing technique, wherein a numerical model is used to simulate a building frame, a physical (centrifuge) model is used to replicate the tunnel-soil-foundation system and structural loads, and coupling of data between the numerical and physical models is achieved using a real-time load-control interface. The technique enables, for the first time, a realistic redistribution of pile loads (based on the superstructure characteristics) to be modelled in the centrifuge. The unique dataset is used to quantify the effects of several factors which have not previously been well defined, including the pile installation method, initial pile safety factor, and superstructure characteristics. In particular, results illustrate that pile settlement and failure mechanisms are highly dependent on the pre-tunnelling loads and the load redistribution that occurs between piles during tunnel volume loss, which are related to structure weight and stiffness. The paper also provides insight as to how pile capacity should be dealt with in a tunnel-pile interaction context.Engineering and Physical Sciences Research Council [grant number
EP/K023020/1, 1296878, EP/N509620/1
A centrifuge modelling study of the response of piled structures to tunnelling
Tunnelling beneath piled structures may compromise the stability and serviceability of the structure. The assessment of potential structure damage is a problem being faced by engineers across the globe. This paper presents the outcomes of a series of geotechnical centrifuge experiments designed to simulate the effect of excavating a tunnel beneath piled structures. The stiffness and weight effects of piled structures are examined independently using aluminium plates of varying stiffness (`equivalent beam' approach) and the addition of weights supporteby aluminium piles. Greenfeld displacement patterns and results from pile loading tests are also provided. The variation of structure displacement profiles with plate stiffness, weight, and tunnel volume loss are used to illustrate the main effects of tunnel-pile interaction and the contribution of the superstructure to the global tunnel-pile-structure interaction. Results indicate that piles have a detrimental role in tunnel-structure interaction problems, whereas the superstructure stiffness and weight can, respectively, reduce and increase structure distor-tions and settlements. Finally, the potential for structural damage is evaluated by comparing structure and greenfield deflection ratios as well as resulting modification factors. The paper presents a unique set of results and insights which provide valuable guidance to engineers working across the ground and structural engineering disciplines
Recommended from our members
Structural health monitoring of a masonry viaduct with Fibre Bragg Grating sensors
The Marsh Lane viaduct is a masonry railway bridge constructed during the 19th century nearby Leeds Central Railway Station. The bridge appears significantly damaged due to the increase of the operational train loads over the last decades and due to environmental effects. Due to this degradation, extensive repair was conducted in 2015. After this repair work, an extensive fibre optic sensor network was installed below three spans of the bridge to monitor surface strains at 68 locations on the underside of the arch spans. The paper compares data collected from two monitoring periods, 16 months apart. Combining statistical analysis and signal processing techniques, the results show that local damage, as well as change in the global dynamic behaviour of the structure over time, can be effectively detected with the use of Fibre Bragg Grating sensors.This work is being funded by the Lloyd’s Register Foundation, EPSRC and Innovate UK through the Data-Centric Engineering programme of the Alan Turing Institute and through the Cambridge Centre for Smart Infrastructure and Construction (CSIC). Funding for the monitoring installation was provided by EPSRC under the Ref. EP/N021614/1 grant and by Innovate UK under the Ref. 920035 grant
Recommended from our members
Real-time data coupling for hybrid testing in a geotechnical centrifuge
Geotechnical centrifuge models necessarily involve simplifications compared to the full-scale scenario under investigation. In particular, structural systems (e.g. buildings or foundations) generally can’t be replicated such that complex full-scale characteristics are obtained. Hybrid testing offers the ability to combine capabilities from physical and numerical modelling to overcome some of the experimental limitations. In this paper, the development of a coupled centrifuge-numerical model (CCNM) pseudo-dynamic hybrid test for the study of tunnel-building interaction is presented. The methodology takes advantage of the relative merits of centrifuge tests (modelling soil behaviour and soil-pile interactions) and numerical simulations (modelling building deformations and load redistribution), with pile load and displacement data being passed in real-time between the two model domains. To appropriately model the full-scale scenario, a challenging force-controlled system was developed (the first of its kind for hybrid testing in a geotechnical centrifuge). The CCNM application can accommodate simple structural frame analyses as well as more rigorous simulations conducted using the finite element analysis software ABAQUS, thereby extending the scope of application to non-linear structural behaviour. A novel data exchange method between ABAQUS and LabVIEW is presented which provides a significant enhancement compared to similar hybrid test developments. Data are provided from preliminary tests which highlight the capabilities of the system to accurately model the global tunnel-building interaction problem
Development of coupled centrifuge-numerical modelling: investigation of global tunnel-building interaction
There is an increasing demand for underground space in urban areas for infrastructure development. This has resulted in tunnel construction taking place in close proximity to buried infrastructure and building foundations. Various studies have considered the effect of tunnel construction on buildings; however the global tunnel-ground building interaction problem is still not well understood. This is due partially to the fact that the available modelling tools do not accurately replicate the global behaviour of soil-structure domains. This research aims to enhance physical modelling capabilities by coupling centrifuge and numerical techniques. The research focuses on tunnelling beneath buildings which are founded on piled foundations. In this paper, the proposed method and the developed equipment are presented. The expected outcomes of this research will provide a better understanding of complex tunnel-ground-building interactions which will help to improve the design approach of tunnels beneath buildings
Development of coupled centrifuge-numerical modelling: investigation of global tunnel-building interaction
There is an increasing demand for underground space in urban areas for infrastructure development. This has resulted in tunnel construction taking place in close proximity to buried infrastructure and building foundations. Various studies have considered the effect of tunnel construction on buildings; however the global tunnel-ground building interaction problem is still not well understood. This is due partially to the fact that the available modelling tools do not accurately replicate the global behaviour of soil-structure domains. This research aims to enhance physical modelling capabilities by coupling centrifuge and numerical techniques. The research focuses on tunnelling beneath buildings which are founded on piled foundations. In this paper, the proposed method and the developed equipment are presented. The expected outcomes of this research will provide a better understanding of complex tunnel-ground-building interactions which will help to improve the design approach of tunnels beneath buildings
Reduction of the model noise in non-linear reconstruction via an efficient calculation of the incident field: application to a 434 MHz Scanner
Microwave tomography has been drastically boosted by the development of efficient reconstruction algorithms based on an iterative solution of the corresponding non-linear inverse problem. The accuracy of the electric field radiated by the antennas of a microwave scanner, inside the target area, has been shown to play a significant role on the overall image quality. Taking into account the antenna environment is of prime importance, especially when operating at low frequency. For instance, the wall of a 60 cm diameter whole-body microwave scanner cannot be neglected at 434 MHz, even when using the immersion technique consisting of putting the target in water. Indeed, at such a frequency, the attenuation introduced by water is not sufficient to avoid multiple reflections on the scanner boundary walls. Consequently, the method of calculating the incident field constitutes a key factor in iteratively solving non-linear inverse problems. The selected technique must accommodate high accuracy while maintaining acceptable calculation complexity. In this paper, three distinct techniques are analysed. They are based on the use of i) free-space and ii) non free-space Green's function, and iii) a FDTD approach. All these techniques have been firstly investigated for their 2D version, being used in 2D reconstruction algorithms. However, the scattered field data are collected in a 3D scanner. For assessing the validity of the previous 2D techniques, their results have been compared to both experimentally and 3D-FDTD results.Peer ReviewedPostprint (published version
Recommended from our members
The Marsh Lane Railway Viaduct: 2 Years of Monitoring with Combined Sensing and Surveying Technologies
Marsh Lane viaduct is a typical example of a 19th century brick masonry railway arch in the UK. It frequently carries passenger trains to and from Leeds Station. This paper broadly discusses the sensing techniques and associated analysis procedures used to (i) identify the reasons for existing damage, (ii) quantify their impact on the dynamic response of the structure and (iii) measure degradation of the response over a period of one year. To identify existing damage, distortions in geometry of the structure are examined with new point cloud processing techniques. With the aid of limit analyses, these distortions are interpreted, and past support movements which may have caused the distortions are identified. Then, to measure the dynamic response of the bridge, quasi-distributed fibre optic strain sensing and digital image correlation displacement measurement techniques are used. These highlight the increased dynamic response around locations of existing damage, and point out to the global mechanisms of response that could propagate damage. Continuous fibre optic strain measurements between November 2017 and 2018 are then discussed to investigate the ongoing deterioration.This work is being funded by the Lloyd’s Register Foundation, EPSRC and Innovate UK through the Data-Centric Engineering programme of the Alan Turing Institute and through the Cambridge Centre for Smart Infrastructure and Construction. Funding for the monitoring installation was provided by EPSRC under the Ref. EP/N021614/1 grant and by Innovate UK under the Ref. 920035 grant
Centrifuge and real-time hybrid testing of tunnelling beneath piles and piled buildings
Tunnels are constructed increasingly close to existing buried structures, including pile foundations. This poses a serious concern, especially for tunnels built beneath piles. Current understanding of the global tunnel-soil-pile-building interaction effects is lacking, which leads to designs which may be overly conservative or the adoption of expensive measures to protect buildings. This paper presents outcomes from 24 geotechnical centrifuge tests that aim to investigate the salient mechanisms that govern piled building response to tunnelling. Centrifuge test data include greenfield tunnelling, pile loading, and tunnelling beneath single piles and piled frames, all within sand. The global tunnel-piled frame interaction scenario is investigated using a newly developed real-time hybrid testing technique, wherein a numerical model is used to simulate a building frame, a physical (centrifuge) model is used to replicate the tunnel-soil-foundation system and structural loads, and coupling of data between the numerical and physical models is achieved using a real-time load-control interface. The technique enables, for the first time, a realistic redistribution of pile loads (based on the superstructure characteristics) to be modelled in the centrifuge. The unique dataset is used to quantify the effects of several factors which have not previously been well defined, including the pile installation method, initial pile safety factor, and superstructure characteristics. In particular, results illustrate that pile settlement and failure mechanisms are highly dependent on the pre-tunnelling loads and the load redistribution that occurs between piles during tunnel volume loss, which are related to structure weight and stiffness. The paper also provides insight as to how pile capacity should be dealt with in a tunnel-pile interaction context
Centrifuge and real-time hybrid testing of tunnelling beneath piles and piled buildings
Tunnels are constructed increasingly close to existing buried structures, including pile foundations. This poses a serious concern, especially for tunnels built beneath piles. Current understanding of the global tunnel-soil-pile-building interaction effects is lacking, which leads to designs which may be overly conservative or the adoption of expensive measures to protect buildings. This paper presents outcomes from 24 geotechnical centrifuge tests that aim to investigate the salient mechanisms that govern piled building response to tunnelling. Centrifuge test data include greenfield tunnelling, pile loading, and tunnelling beneath single piles and piled frames, all within sand. The global tunnel-piled frame interaction scenario is investigated using a newly developed real-time hybrid testing technique, wherein a numerical model is used to simulate a building frame, a physical (centrifuge) model is used to replicate the tunnel-soil-foundation system and structural loads, and coupling of data between the numerical and physical models is achieved using a real-time load-control interface. The technique enables, for the first time, a realistic redistribution of pile loads (based on the superstructure characteristics) to be modelled in the centrifuge. The unique dataset is used to quantify the effects of several factors which have not previously been well defined, including the pile installation method, initial pile safety factor, and superstructure characteristics. In particular, results illustrate that pile settlement and failure mechanisms are highly dependent on the pre-tunnelling loads and the load redistribution that occurs between piles during tunnel volume loss, which are related to structure weight and stiffness. The paper also provides insight as to how pile capacity should be dealt with in a tunnel-pile interaction context
- …