34 research outputs found

    Infrared laser post-ionization of large biomolecules from an IR-MALD(I) plume

    Get PDF
    AbstractA two-infrared laser desorption/ionization method is described. A first laser, which was either an Er:YAG laser or an optical parametric oscillator (OPO), served for ablation/vaporization of small volumes of analyte/matrix sample at fluences below the ion detection threshold for direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). A second IR-laser, whose beam intersected the expanding ablation plume at a variable distance and time delay, was used to generate biomolecular ions out of the matrix-assisted laser desorption (MALD) plume. Either one of the two above lasers or an Er:YSGG laser was used for post-ionization. Glycerol was used as IR-MALDI matrix, and mass spectra of peptides, proteins, as well as nucleic acids, some of which in excess of 105 u in molecular weight, were recorded with a time-of-flight mass spectrometer. A mass spectrum of cytochrome c from a water ice matrix is also presented. The MALD plume expansion was investigated by varying the position of the post-ionization laser beam above the glycerol sample surface and its delay time relative to the desorption laser. Comparison between the OPO (pulse duration, τL = 6 ns) and the Er:YAG laser (τL ∼120 ns) as primary excitation laser demonstrates a significant effect of the laser pulse duration on the MALD process

    Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful defence of tobacco plants against attack from the oomycete <it>Phytophthora nicotianae </it>includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection.</p> <p>Results</p> <p>Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response.</p> <p>A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings.</p> <p>Conclusion</p> <p>The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids, oxylipins, and carbohydrates. Moreover, potential novel biomarkers can be detected and used to predict the quality of plant infections.</p

    Introduction:  Laser Ablation of Molecular Substrates

    No full text

    Infrared matrix-assisted laser desorption and ionization by using a tunable mid-infrared free-electron laser

    Get PDF
    Initial results of infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry of proteins by using the Vanderbilt free-electron laser as the source of selective vibrational excitation are reported. The ability of this laser to initiate desorption and ionization by excitation of specific vibrational modes is demonstrated. For the first time it is shown that IR-MALDI mass spectrometry at wavelengths other than those available from conventional fixed-frequency IR lasers, that is, 2.79 (Er:YSGG), 2.94 (Er:YAG), and 9.3–10.6 μm (CO2), is feasible and exhibits similar performance. IR-MALDI mass spectra were taken in the wavelength ranges 2.8–4 and 5.5–6.5 μm, covering the absorption bands of the O-H and C=O stretch vibrations typical of many organic compounds such as succinic acid, fumaric acid, or nicotinic acid, which were used as matrices in these studies. A comparison between these results and Er:YAG/YSGG MALDI data are given. The potential of IR-MALDI at wavelengths near the C=O stretch vibration and the possibilities for studies of the IR-MALDI mechanisms by using this kind of tunable source are discussed
    corecore