3 research outputs found

    Auger de-excitation of metastable molecules at metallic surfaces

    Full text link
    We study secondary electron emission from metallic surfaces due to Auger de-excitation of diatomic metastable molecules. Our approach is based on an effective model for the two active electrons involved in the process -- a molecular electron described by a linear combination of atomic orbitals when it is bound and a two-center Coulomb wave when it is not and a metal electron described by the eigenfunctions of a step potential -- and employs Keldysh Green's functions. Solving the Dyson equation for the retarded Green's function by exponential resummation we are able to treat time-nonlocal self-energies and to avoid the wide-band approximation.Results are presented for the de-excitation of \NitrogenDominantMetastableState\ on aluminum and tungsten and discussed in view of previous experimental and theoretical investigations. We find quantitative agreement with experimental data for tungsten indicating that the effective model captures the physics of the process quite well. For aluminum we predict secondary electron emission due to Auger de-excitation to be one to two orders of magnitude smaller than the one found for resonant charge-transfer and subsequent auto-detachment.Comment: 15 pages, 9 figures, revised version using an improved single-electron basi

    Electron energy loss spectroscopy of wall charges in plasma-facing dielectrics

    No full text
    Abstract We propose a setup enabling electron energy loss spectroscopy to determine the density of the electrons accumulated by an electropositive dielectric in contact with a plasma. It is based on a two-layer structure inserted into a recess of the wall. Consisting of a plasma-facing film made out of the dielectric of interest and a substrate layer, the structure is designed to confine the plasma-induced surplus electrons to the region of the film. The charge fluctuations they give rise to can then be read out from the backside of the substrate by near specular electron reflection. To obtain in this scattering geometry a strong charge-sensitive reflection maximum due to the surplus electrons, the film has to be most probably pre-n-doped and sufficiently thin with the mechanical stability maintained by the substrate. Taking electronegative CaO as a substrate layer we demonstrate the feasibility of the proposal by calculating the loss spectra for Al2O3, SiO2, and ZnO films. In all three cases we find a reflection maximum strongly shifting with the density of the surplus electrons and suggest to use it for charge diagnostics
    corecore