20 research outputs found

    Cultivation and Immortalization of Human B-Cells Producing a Human Monoclonal IgM Antibody Binding to MDA-LDL: Further Evidence for Formation of Atherogenic MDA-LDL Adducts in Humans In Vivo

    Get PDF
    Oxidatively modified low-density lipoprotein (oLDL) is firmly believed to play an important role in the initiation and development of atherosclerosis, and malonic dialdehyde (MDA) is one of the major lipid peroxidation breakdown products involved in this process. In recent decades, antibodies against MDA-LDL have been detected in human and animal sera. In our study, human B-cells from the peripheral blood of a healthy female donor were fused with the SP2/0 mouse myeloma cell line. Antibody-producing hybridomas were detected by MDA-LDL-IgG/IgM enzyme-linked immunosorbent assays (ELISA) and Cu++-oxidized LDL IgG/IgM (oLAb) ELISA. Cells with supernatants emitting positive signals for antibodies were then cloned and after sufficient multiplication frozen and stored under liquid nitrogen. Due to the loss of antibody-producing ability, we established an MDA-LDL-IgM-producing cell line by recloning. This allowed isolation and immortalization of several human B-cells. The human donor had not been immunized with MDA-modified proteins, thus obviously producing MDA-LDL antibodies in vivo. Furthermore, using these antibodies for in vitro experiments, we were able to demonstrate that MDA epitopes are among the epitopes generated during Cu++-LDL oxidation as well. Finally, these antibodies compete in ELISA and cell culture experiments with MDA as a challenging toxin or ligand

    Preliminary findings on the association of the lipid peroxidation product 4-hydroxynonenal with the lethal outcome of aggressive COVID-19

    Get PDF
    Major findings of the pilot study involving 21 critically ill patients during the week after admission to the critical care unit specialized for COVID-19 are presented. Fourteen patients have recovered, while seven passed away. There were no differences between them in respect to clinical or laboratory parameters monitored. However, protein adducts of the lipid peroxidation product 4-hydroxynonenal (HNE) were higher in the plasma of the deceased patients, while total antioxidant capacity was below the detection limit for the majority of sera samples in both groups. Moreover, levels of the HNE-protein adducts were constant in the plasma of the deceased patients, while in survivors, they have shown prominent and dynamic variations, suggesting that survivors had active oxidative stress response mechanisms reacting to COVID-19 aggression, which were not efficient in patients who died. Immunohistochemistry revealed the abundant presence of HNE-protein adducts in the lungs of deceased patients indicating that HNE is associated with the lethal outcome. It seems that HNE was spreading from the blood vessels more than being a consequence of pneumonia. Due to the limitations of the relatively small number of patients involved in this study, further research on HNE and antioxidants is needed. This might allow a better understanding of COVID-19 and options for utilizing antioxidants by personalized, integrative biomedicine approach to prevent the onset of HNE-mediated vitious circle of lipid peroxidation in patients with aggressive inflammatory diseases

    Coating with Hypertonic Saline Improves Virus Protection of Filtering Facepiece Manyfold—Benefit of Salt Impregnation in Times of Pandemic

    No full text
    Recently, as is evident with the COVID-19 pandemic, virus-containing aerosols can rapidly spread worldwide. As a consequence, filtering facepieces (FFP) are essential tools to protect against airborne viral particles. Incorrect donning and doffing of masks and a lack of hand-hygiene cause contagion by the wearers’ own hands. This study aimed to prove that hypertonic saline effectively reduces the infectious viral load on treated masks. Therefore, a hypertonic salt solution´s protective effect on surgical masks was investigated, specifically analyzing the infectivity of aerosolized Alphacoronavirus 1 in pigs (Transmissible Gastroenteritis Virus (TGEV)). Uncoated and hypertonic salt pre-coated FFPs were sprayed with TGEV. After drying, a defined part of the mask was rinsed with the medium, and the eluent was used for the infection of a porcine testicular cell line. Additionally, airborne microorganisms´ long-term infectivity of sodium-chloride in phosphate-buffered saline comprising 5% saccharose was investigated. In the results from an initial Median Tissue Culture Infectious Dose, infection rate of TGEV was minimally reduced by untreated FFP. In contrast, this could be reduced by a factor of 104 if FFPs were treated with hypertonic salt solutions. Airborne pathogens did not contaminate the growth medium if salt concentrations exceeded 5%. We conclude that hypertonic saline is a vital tool for anti-virus protection, exponentially improving the impact of FFPs

    Thinking beyond Vaccination: Promising Add-On Strategies to Active Immunization and Vaccination in Pandemics—A Mini-Review

    No full text
    There is little doubt that final victories over pandemics, such as COVID-19, are attributed to herd immunity, either through post-disease convalescence or active immunization of a high percentage of the world’s population with vaccines, which demonstrate protection from infection and transmission and are available in large quantities at reasonable prices. However, it is assumable that humans with immune defects or immune suppression, e.g., as a consequence of allograft transplantation, cannot be immunized actively nor produce sufficient immune responses to prevent SARS-CoV-2 infections. These subjects desperately need other strategies, such as sophisticated protection measures and passive immunization. Hypertonic salt solutions attack vulnerable core areas of viruses; i.e., salt denatures surface proteins and thus prohibits virus penetration of somatic cells. It has to be ensured that somatic proteins are not affected by denaturation regarding this unspecific virus protection. Impregnating filtering facepieces with hypertonic salt solutions is a straightforward way to inactivate viruses and other potential pathogens. As a result of the contact of salt crystals on the filtering facepiece, these pathogens become denatured and inactivated almost quantitatively. Such a strategy could be easily applied to fight against the COVID-19 pandemic and other ones that may occur in the future. Another possible tool to fight the COVID-19 pandemic is passive immunization with antibodies against SARS-CoV-2, preferably from human origin. Such antibodies can be harvested from human patients’ sera who have successfully survived their SARS-CoV-2 infection. The disadvantage of a rapid decrease in the immunoglobulin titer after the infection ends can be overcome by immortalizing antibody-producing B cells via fusion with, e.g., mouse myeloma cells. The resulting monoclonal antibodies are then of human origin and available in, at least theoretically, unlimited amounts. Finally, dry blood spots are a valuable tool for surveilling a population’s immunity. The add-on strategies were selected as examples for immediate, medium and long-term assistance and therefore did not raise any claim to completeness

    Lipidomics Revealed Plasma Phospholipid Profile Differences between Deceased and Recovered COVID-19 Patients

    No full text
    Thorough understanding of metabolic changes, including lipidome alteration, associated with the development of COVID-19 appears to be crucial, as new types of coronaviruses are still reported. In this study, we analyzed the differences in the plasma phospholipid profiles of the deceased COVID-19 patients, those who recovered and healthy people. Due to identified abnormalities in plasma phospholipid profiles, deceased patients were further divided into two subgroups (D1 and D2). Increased levels of phosphatidylethanolamines (PE), phosphatidylcholines (PC) and phosphatidylserines (PS) were found in the plasma of recovered patients and the majority of deceased patients (first subgroup D1) compared to the control group. However, abundances of all relevant PE, PC and PS species decreased dramatically in the plasma of the second subgroup (D2) of five deceased patients. These patients also had significantly decreased plasma COX-2 activity when compared to the control, in contrast to unchanged and increased COX-2 activity in the plasma of the other deceased patients and recovered patients, respectively. Moreover, these five deceased patients were characterized by abnormally low CRP levels and tremendous increase in LDH levels, which may be the result of other pathophysiological disorders, including disorders of the immune system, liver damage and haemolytic anemia. In addition, an observed trend to decrease the autoantibodies against oxidative modifications of low-density lipoprotein (oLAb) titer in all, especially in deceased patients, indicate systemic oxidative stress and altered immune system that may have prognostic value in COVID-19

    Occupational Health Aspects with Special Focus on Physiological Differences between Office and Metalworkers

    No full text
    Physical workload adversely impacts inflammation, oxidative stress and mood in heavy workers. We compared these risk parameters between metalworkers (n = 20) and office workers (n = 30), including gender differences. Blood samples were analyzed with thirty parameters to overview endocrinology, inflammation, and psychological and oxidative stress. Despite an adequate antioxidative supply, oxidative stress occurred in metalworkers, as indicated by significantly increased peroxide and homocysteine (Hcy) levels. Moreover, increased concentrations were observed in this group regarding psychological stress and diet-related parameters. Sex-specific differences were determined for physical dimensions, dehydroepiandrosterone sulfate (DHEAS), Hcy, uric acid, triglycerides, osmolality, anti-Mullerian hormone (AMH) and testosterone. Age-associated differences were observed for DHEAS, glycosylated hemoglobin, adrenaline, AMH and testosterone. In male office workers, the body mass index was associated with increased LDL-HDL, cholesterol-HDL and homeostatic model assessment of insulin resistance (HOMA-IR). In conclusion, these results indicate increased oxidative stress and psychological stress in heavy workers independently of adequate antioxidant sustenance. The sedentary occupation of office workers, in turn, favored diseases of affluence. This might be particularly relevant for long-term occupied persons and older workers due to a hormonal shift coming along, given the risk for oxidative stress-related diseases such as cardiovascular disease, particularly in the case of males, based on their lifestyle habits

    Work Intensity, Low-Grade Inflammation, and Oxidative Status: A Comparison between Office and Slaughterhouse Workers

    No full text
    Limited knowledge exists about the impact of physical workload on oxidative stress in different occupational categories. Thus, we aimed to investigate the oxidative and inflammatory status in employees with different physical workloads. We enrolled a total of 79 male subjects, 27 office workers (mean age 38.8 ± 9.1 years) and 52 heavy workers, in a slaughterhouse (mean age 40.8 ± 8.2 years). Fasting blood was drawn from an antecubital vein in the morning of the midweek before an 8-hour or 12-hour work shift. The antioxidative capacity was assessed measuring total antioxidant capacity (TAC), uric acid, total polyphenols (PPm), and endogenous peroxidase activity (EPA). Total peroxides (TOC), malondialdehyde (MDA), and myeloperoxidase (MPO) were analyzed as prooxidative biomarkers, and an oxidative stress index (OSI) was calculated. In addition, hsCRP, interleukin-6 (IL-6), MDA-LDL IgM antibodies, galectin-3, adrenocorticotropic hormone (ACTH), and the brain-derived neurotrophic factor (BDNF) were measured as biomarkers of chronic systemic inflammation and emotional stress. TOC (p=0.032), TAC (p<0.001), ACTH (p<0.001), OSI (p=0.011), and hsCRP (p=0.019) were significantly increased in the heavy workers group, while EPA, BDNF (p<0.001), and polyphenols (p=0.004) were significantly higher in office workers. Comparison between 8 and 12 h shifts showed a worse psychological condition in heavy workers with increased levels for hsCRP (p=0.001) and reduced concentration of BDNF (p=0.012) compared to office workers. Oxidative stress and inflammation are induced in heavy workers and are particularly pronounced during long working hours, that is, 12-hour versus 8-hour shifts

    Antioxidative 1,4-Dihydropyridine Derivatives Modulate Oxidative Stress and Growth of Human Osteoblast-Like Cells In Vitro

    Get PDF
    Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 &micro;M H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 &micro;M). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals
    corecore