35 research outputs found

    Magnetic Microscopy Promises a Leap in Sensitivity and Resolution

    Get PDF
    Twenty years ago, Kirschvink argued that many paleomagnetic studies were limited by the sensitivity of the magnetometer systems then in use [Kirschvink, 1981]. He showed that sedimentary rocks could preserve detrital remanent magnetizations at levels of 10^(-14) to 10^(-15) Am^2, about 100-1000 times below the noise level of today's best superconducting (SQUID) rock magnetometers. If a more sensitive magnetometer could be built, it would dramatically expand the range and variety of rock types amenable to paleomagnetic analysis. Just such an instrument is now on the horizon: the low-temperature superconductivity (LTS) SQUID Microscope

    Ultrafine-scale magnetostratigraphy of marine ferromanganese crust

    Get PDF
    http://geology.geoscienceworld.org/content/39/3/227.full.pdf+htmlHydrogenetic ferromanganese crusts are iron-manganese oxide chemical precipitates on the seafloor that grow over periods of tens of millions of years. Their secular records of chemical, mineralogical, and textural variations are archives of deep-sea environmental changes. However, environmental reconstruction requires reliable high-resolution age dating. Earlier chronological methods using radiochemical and stable isotopes provided age models for ferromanganese crusts, but have limitations on the millimeter scale. For example, the reliability of 10Be/9Be chronometry, commonly considered the most reliable technique, depends on the assumption that the production and preservation of 10Be are constant, and requires accurate knowledge of the 10Be half-life. To overcome these limitations, we applied an alternative chronometric technique, magnetostratigraphy, to a 50-mm-thick hydrogenetic ferromanganese crust (D96-m4) from the northwest Pacific. Submillimeter-scale magnetic stripes originating from approximately oppositely magnetized regions oriented parallel to bedding were clearly recognized on thin sections of the crust using a high-resolution magnetometry technique called scanning SQUID (superconducting quantum interference device) microscopy. By correlating the boundaries of the magnetic stripes with known geomagnetic reversals, we determined an average growth rate of 5.1 Β± 0.2 mm/m.y., which is within 16% of that deduced from the 10Be/9Be method (6.0 Β± 0.2 mm/m.y.). This is the finest-scale magnetostratigraphic study of a geologic sample to date. Ultrafine-scale magnetostratigraphy using SQUID microscopy is a powerful new chronological tool for estimating ages and growth rates for hydrogenetic ferromanganese crusts. It provides chronological constraints with the accuracy promised by the astronomically calibrated magnetostratigraphic time scale (1–40 k.y.).Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research (21654071))National Science Foundation (U.S.) (Collaboration in Mathematical Geosciences Program

    Combinatorial Polymer Electrospun Matrices Promote Physiologically-Relevant Cardiomyogenic Stem Cell Differentiation

    Get PDF
    Myocardial infarction results in extensive cardiomyocyte death which can lead to fatal arrhythmias or congestive heart failure. Delivery of stem cells to repopulate damaged cardiac tissue may be an attractive and innovative solution for repairing the damaged heart. Instructive polymer scaffolds with a wide range of properties have been used extensively to direct the differentiation of stem cells. In this study, we have optimized the chemical and mechanical properties of an electrospun polymer mesh for directed differentiation of embryonic stem cells (ESCs) towards a cardiomyogenic lineage. A combinatorial polymer library was prepared by copolymerizing three distinct subunits at varying molar ratios to tune the physicochemical properties of the resulting polymer: hydrophilic polyethylene glycol (PEG), hydrophobic poly(Ξ΅-caprolactone) (PCL), and negatively-charged, carboxylated PCL (CPCL). Murine ESCs were cultured on electrospun polymeric scaffolds and their differentiation to cardiomyocytes was assessed through measurements of viability, intracellular reactive oxygen species (ROS), Ξ±-myosin heavy chain expression (Ξ±-MHC), and intracellular Ca2+ signaling dynamics. Interestingly, ESCs on the most compliant substrate, 4%PEG-86%PCL-10%CPCL, exhibited the highest Ξ±-MHC expression as well as the most mature Ca2+ signaling dynamics. To investigate the role of scaffold modulus in ESC differentiation, the scaffold fiber density was reduced by altering the electrospinning parameters. The reduced modulus was found to enhance Ξ±-MHC gene expression, and promote maturation of myocyte Ca2+ handling. These data indicate that ESC-derived cardiomyocyte differentiation and maturation can be promoted by tuning the mechanical and chemical properties of polymer scaffold via copolymerization and electrospinning techniques

    Paleomagnetic Analysis Using SQUID Microscopy

    No full text
    Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples

    Measurements of Transmembrane Potential and Magnetic Field at the Apex of the Heart

    Get PDF
    We studied the transmembrane potential and magnetic fields from electrical activity at the apex of the isolated rabbit heart experimentally using optical mapping and superconducting quantum interference device microscopy, and theoretically using monodomain and bidomain models. The cardiac apex has a complex spiral fiber architecture that plays an important role in the development and propagation of action currents during stimulation at the apex. This spiral fiber orientation contains both radial electric currents that contribute to the electrocardiogram and electrically silent circular currents that cannot be detected by the electrocardiogram but are detectable by their magnetic field, Bz. In our experiments, the transmembrane potential, Vm, was first measured optically and then Bz was measured with a superconducting quantum interference device microscope. Based on a simple model of the spiral structure of the apex, Vm was expected to exhibit circular wave front patterns and Bz to reflect the circular component of the action currents. Although the circular Vm wave fronts were detected, the Bz maps were not as simple as expected. However, we observed a pattern consistent with a tilted axis for the apex spiral fiber geometry. We were able to simulate similar patterns in both a monodomain model of a tilted stack of rings of dipole current and a bidomain model of a tilted stack of spiraled cardiac tissue that was stimulated at the apex. The fact that the spatial pattern of the magnetic data was more complex than the simple circles observed for Vm suggests that the magnetic data contain information that cannot be found electrically

    Records of an ancient Martian magnetic field in ALH84001

    No full text
    Although Mars does not presently appear to have a global dynamo magnetic field, strong crustal fields have recently been detected by the Mars Global Surveyor above surfaces formed ∼3 or more Ga. We present magnetic and textural studies of Martian meteorite ALH84001 demonstrating that 4 Ga carbonates containing magnetite and pyrrhotite carry a stable natural remanent magnetization. Because ^(40)Ar/^(39)Ar thermochronology demonstrates that most ALH84001 carbonates have probably been well below the Curie point of magnetite since near the time of their formation [Weiss et al., Earth Planet. Sci. Lett. (2002) this issue], their magnetization originated at 3.9–4.1 Ga on Mars. This magnetization is at least 500 million years (Myr) older than that known in any other planetary rock, and its strong intensity suggests that Mars had generated a geodynamo and global magnetic field within 450–650 Myr of its formation. The intensity of this field was roughly within an order of magnitude of that at the surface of the present-day Earth, sufficient for magnetotaxis by the bacteria whose magnetofossils have been reported in ALH84001 and possibly for the production of the strong crustal anomalies. Chromite in ALH84001 may retain even older records of Martian magnetic fields, possibly extending back to near the time of planetary formation
    corecore