424 research outputs found

    About the Functional Form of the Parisi Overlap Distribution for the Three-Dimensional Edwards-Anderson Ising Spin Glass

    Full text link
    Recently, it has been conjectured that the statistics of extremes is of relevance for a large class of correlated system. For certain probability densities this predicts the characteristic large xx fall-off behavior f(x)exp(aex)f(x)\sim\exp (-a e^x), a>0a>0. Using a multicanonical Monte Carlo technique, we have calculated the Parisi overlap distribution P(q)P(q) for the three-dimensional Edward-Anderson Ising spin glass at and below the critical temperature, even where P(q)P(q) is exponentially small. We find that a probability distribution related to extreme order statistics gives an excellent description of P(q)P(q) over about 80 orders of magnitude.Comment: 4 pages RevTex, 3 figure

    Spin glass overlap barriers in three and four dimensions

    Full text link
    For the Edwards-Anderson Ising spin-glass model in three and four dimensions (3d and 4d) we have performed high statistics Monte Carlo calculations of those free-energy barriers FBqF^q_B which are visible in the probability density PJ(q)P_J(q) of the Parisi overlap parameter qq. The calculations rely on the recently introduced multi-overlap algorithm. In both dimensions, within the limits of lattice sizes investigated, these barriers are found to be non-self-averaging and the same is true for the autocorrelation times of our algorithm. Further, we present evidence that barriers hidden in qq dominate the canonical autocorrelation times.Comment: 20 pages, Latex, 12 Postscript figures, revised version to appear in Phys. Rev.

    A model of ant route navigation driven by scene familiarity

    Get PDF
    In this paper we propose a model of visually guided route navigation in ants that captures the known properties of real behaviour whilst retaining mechanistic simplicity and thus biological plausibility. For an ant, the coupling of movement and viewing direction means that a familiar view specifies a familiar direction of movement. Since the views experienced along a habitual route will be more familiar, route navigation can be re-cast as a search for familiar views. This search can be performed with a simple scanning routine, a behaviour that ants have been observed to perform. We test this proposed route navigation strategy in simulation, by learning a series of routes through visually cluttered environments consisting of objects that are only distinguishable as silhouettes against the sky. In the first instance we determine view familiarity by exhaustive comparison with the set of views experienced during training. In further experiments we train an artificial neural network to perform familiarity discrimination using the training views. Our results indicate that, not only is the approach successful, but also that the routes that are learnt show many of the characteristics of the routes of desert ants. As such, we believe the model represents the only detailed and complete model of insect route guidance to date. What is more, the model provides a general demonstration that visually guided routes can be produced with parsimonious mechanisms that do not specify when or what to learn, nor separate routes into sequences of waypoints

    What information can we obtain from the yield ratio π/π+\pi^-/\pi^+ in heavy-ion collisions ?

    Full text link
    The recently reported data on the yield ratio π/π+\pi^-/\pi^+ in central rapidity region of heavy-ion collisions are analyzed by theoretical formula which accounts for Coulomb interaction between central charged fragment (CCF) consisting of nearly stopped nucleons with effective charge Z_{\mbox{\scriptsize eff}} and charged pions produced in the same region of the phase space. The Coulomb wave function method is used instead of the usual Gamow factor in order to account for the finite production range of pions, β\beta. For Gaussian shape of the pion production sources it results in a quasi-scaling in β\beta and Z_{\mbox{\scriptsize eff}} which makes determination of parameters β\beta and Z_{\mbox{\scriptsize eff}} from the existing experimental data difficult. Only sufficiently accurate data taken in the extreme small mTm_{\scriptscriptstyle T}-mπm_{\pi} region, where this quasi-scaling is broken, could be used for this purpose.Comment: 7 pages, Latex type, 8 figure

    Numerical Results for Ground States of Mean-Field Spin Glasses at low Connectivities

    Full text link
    An extensive list of results for the ground state properties of spin glasses on random graphs is presented. These results provide a timely benchmark for currently developing theoretical techniques based on replica symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on fixed-connectivity graphs (Bethe lattices) exhibit a richer phenomenology than has been anticipated by theory. Our data prove to be sufficiently accurate to speculate about some exact results.Comment: 4 pages, RevTex4, 5 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    Revisiting the Bs()B^{(*)}_s-Meson Production at the Hadronic Colliders

    Full text link
    The production of heavy-flavored hadron at the hadronic colliders provides a challenging opportunity to test the validity of pQCD predictions. There are two mechanisms for the Bs()B^{(*)}_s hadroproduction, i.e. the gluon-gluon fusion mechanism via the subprocess g+gBs()+b+sˉg+g\rightarrow B^{(*)}_s+b+\bar{s} and the extrinsic heavy quark mechanism via the subprocesses g+bˉBs()+sˉg+\bar{b}\to B^{(*)}_s +\bar{s} and g+sBs()+bg+s\to B^{(*)}_s +b, both of which shall have sizable contributions in proper kinematic region. Different from the fixed-flavor-number scheme (FFNS) previously adopted in the literature, we study the Bs()B^{(*)}_s hadroproduction under the general-mass variable-flavor-number scheme (GM-VFNS), in which we can consistently deal with the double counting problem from the above two mechanisms. Properties for the Bs()B^{(*)}_s hadroproduction are discussed. To be useful reference, a comparative study of FFNS and GM-VFNS is presented. Both of which can provide reasonable estimations for the Bs()B^{(*)}_s hadroproduction. At the Tevatron, the difference between these two schemes is small, however such difference is obvious at the LHC. The forthcoming more precise data on LHC shall provide a good chance to check which scheme is more appropriate to deal with the Bs()B^{(*)}_s-meson production and to further study the heavy quark components in hadrons.Comment: 18 pages, 8 figures, 4 tables. To match the published version. To be published in Eur.Phys.J.

    Satellite-Detected Fluorescence Reveals Global Physiology of Ocean Phytoplankton

    Get PDF
    Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models

    The spectral curve of a quaternionic holomorphic line bundle over a 2-torus

    Get PDF
    A conformal immersion of a 2-torus into the 4-sphere is characterized by an auxiliary Riemann surface, its spectral curve. This complex curve encodes the monodromies of a certain Dirac type operator on a quaternionic line bundle associated to the immersion. The paper provides a detailed description of the geometry and asymptotic behavior of the spectral curve. If this curve has finite genus the Dirichlet energy of a map from a 2-torus to the 2-sphere or the Willmore energy of an immersion from a 2-torus into the 4-sphere is given by the residue of a specific meromorphic differential on the curve. Also, the kernel bundle of the Dirac type operator evaluated over points on the 2-torus linearizes in the Jacobian of the spectral curve. Those results are presented in a geometric and self contained manner.Comment: 36 page

    Anatomy of BioJS, an open source community for the life sciences

    Get PDF
    BioJS is an open source software project that develops visualization tools for different types of biological data. Here we report on the factors that influenced the growth of the BioJS user and developer community, and outline our strategy for building on this growth. The lessons we have learned on BioJS may also be relevant to other open source software projects

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding
    corecore