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THE SPECTRAL CURVE OF A QUATERNIONIC HOLOMORPHIC

LINE BUNDLE OVER A 2–TORUS

CHRISTOPH BOHLE, FRANZ PEDIT, AND ULRICH PINKALL

1. Introduction

Over the last 20 years algebraically completely integrable systems have been studied in a
variety of contexts. On the one hand their theory is interesting from a purely algebraic
geometric point of view, on the other hand a number of problems arising in mathematical
physics and global differential geometry can be understood in the framework of those in-
tegrable systems. This situation has led to a rich cross–fertilization of algebraic geometry,
global differential geometry and mathematical physics.

The phase space of an algebro–geometric integrable system consists of moduli of algebraic
curves together with their Jacobians, the Lagrangian tori on which the motion of the
system linearizes in a direction osculating the Abel image (at some marked point) of the
curve. In classical terminology the algebraic curve, usually referred to as the spectral
curve, encodes the action variables whereas the Jacobian of the curve encodes the angle
variables of the system. Since the Jacobian of a curve acts on the Picard variety of fixed
degree line bundles, the linear flow in the Jacobian gives rise, via the Kodaira embedding,
to a flow of algebraic curves in a projective space. If this projective space is P1 the correct
choice of moduli of curves yields as flows harmonic maps from R2 to P1 = S2. In case
those flows are periodic in the Jacobian, one obtains harmonic cylinders or tori in S2.
The action of the Jacobian on harmonic maps is a geometric manifestation of the sinh–
Gordon hierarchy in mathematical physics, where one perhaps is more interested in the
solutions of the field equation, here the elliptic sinh–Gordon equation, rather than the
harmonic maps described by these solutions. It is a remarkable fact [18, 10] that, due to
the ellipticity of the harmonic map equation, all harmonic tori arise in this way. It is well
known that harmonic maps into S2 are the unit normal maps of constant mean curvature
surfaces in 3–space. Thus, the classical problem of finding all constant mean curvature
tori can be rephrased by studying a particular algebro-geometric integrable system [18, 1].

This picture pertains in many other instances, including finite gap solutions of the KdV
hierarchy, whose “fields” can be interpreted as the Schwarzian derivatives of curves in P1,
elliptic Toda field equations for the linear groups, which arise in the study of minimal tori
in spheres and projective spaces, and Willmore tori in 3 and 4–space. In each of these cases
the equations can be rephrased as an algebraically completely integrable system. One of
the implications of such a description is the explicit computability of solutions, since linear
flows on Jacobians are parametrized by theta functions of the underlying algebraic curve.
Moreover, the energy functional — Dirichlet energy, area, Willmore energy etc. — of the
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corresponding variational problem appears as a residue of a certain meromorphic form on
the spectral curve, which makes the functional amenable to algebro–geometric techniques.

In all of the above cases the spectral curves are intimately linked to holonomy representa-
tions of holomorphic families of flat connections. For example, the harmonic map equation
of a Riemann surface into the 2-sphere can be written as a zero curvature condition on
a C∗–family of SL(2,C)–connections [10, 8]. If the underlying surface is a 2–torus, the
eigenvalues of the holonomy (based at some point on the torus) give a hyper–elliptic curve.
The corresponding eigenlines define a line bundle over this curve which moves linearly in
the Picard of the curve as the base point moves over the torus. Perhaps there has been
a sentiment that this setup is prototypical for algebraically completely integrable systems
which arise in the context of differential geometry. We are learning now [3] that there
is a much less confined setting for which the above described techniques are applicable:
the geometric classes of surfaces described by zero curvature equations are special invari-
ant subspaces of a more general phase space related to the Davey–Stewartson hierarchy
[11, 21, 12, 5, 15].

This more general setting has to do with the notion of a “spectral variety” [6, 16, 13,
14, 7] for a differential operator. For example, if we want to study the spectrum of the
Schrödinger operator on a periodic structure (crystal), we need to find a solution (the
wave function) for a given energy which is quasi-periodic, that is, gains a phase factor
over the crystal, since the physical state only depends on the complex line spanned by
the wave function. If the crystal is a 2–D lattice, we obtain a spectral variety given by
the energies and the possible phases of the wave functions, which in this case would be
an analytic surface. Another example occurs in the computations of tau and correlation
functions of massive conformal field theories over a Riemann surface M . In this case one
is interested in solutions with monodromy of the Dirac operator with mass

D =

(
∂̄ −m
m ∂

)

that is, solutions ψ which satisfy

Dψ = 0 and γ∗ψ = ψhγ

for a representation h : π1(M) → C∗ of the fundamental group acting by deck transfor-
mations. The spectral variety, parametrizing the possible monodromies, generally is an
analytic set.

This last example arises naturally [8] in the study of quaternionic holomorphic line bun-
dles W over a Riemann surface M . Such lines bundles carry a complex structure J ∈
Γ(End(W )) compatible with the quaternionic structure and the holomorphic structure is
described by a quaternionic – generally not complex – linear first order operator

D = ∂̄+Q : Γ(W ) → Γ(K̄W ) .

Here Q ∈ Γ(K̄ End−(W )) is the complex anti–linear part of D and the complex linear
part ∂̄ is a complex holomorphic structure on W . The energy of the holomorphic line
bundle W is the L2–norm

W(W,D) = 2

∫

M
< Q ∧ ∗Q >

of Q which is zero for complex holomorphic structures D = ∂̄. There are two important
geometric applications depending on the dimension h0(W ) of the space of holomorphic
sections H0(W ). If h0(W ) = 1 and the spanning holomorphic section ψ ∈ H0(W ) has
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no zeros, the complex structure J can be regarded as a smooth map from the Riemann
surface M to S2 whose Dirichlet energy is W. In the case h0(W ) = 2 the ratio of two
independent holomorphic sections defines a (branched) conformal immersion from the
Riemann surface M to S4 whose Willmore energy, the average square mean curvature∫
M H2, is given by W. In both cases all the respective maps are described by suitably

induced quaternionic holomorphic line bundles [8, 4].

A central geometric feature of both theories is the existence of Darboux transformations
[3] which is a first manifestation of complete integrability. These Darboux transforms

correspond to holomorphic sections with monodromy, that is, sections ψ ∈ H0(W̃ ) of the

pullback bundle W̃ of W to the universal cover of M , which satisfy

γ∗ψ = ψhγ

for a representation h : π1(M) → H∗.

From here on we only discuss the case when the underlying Riemann surface M is a
2–torus T 2 = R2/Γ. Then the fundamental group is abelian and it suffices to consider
holomorphic sections with complex monodromies which are all of the form h = exp(

∫
ω)

for a harmonic form ω ∈ Harm(T 2,C). Interpreting exp(
∫
ω) as a (non–periodic) gauge

on R2, a holomorphic section ψ with monodromy h = exp(
∫
ω) gives rise to the section

ψ exp(−
∫
ω) ∈ Γ(W ) without monodromy on the torus which lies in the kernel of the

periodic operator

Dω = exp(−

∫
ω) ◦D ◦ exp(

∫
ω) : Γ(W ) → Γ(K̄W ) .

Therefore, the Darboux transforms are described by the harmonic forms ω ∈ Harm(T 2,C)
for which Dω has a non–trivial kernel, and we call this set the logarithmic spectrum

S̃pec(W,D) of the quaternionic holomorphic line bundle W . Note that S̃pec(W,D) is
invariant under translations by the dual lattice Γ∗ of integer period harmonic forms and
its quotient under this lattice, the spectrum

Spec(W,D) = S̃pec(W,D)/Γ∗ ⊂ Hom(Γ,C∗) ,

is the set of possible monodromies of the holomorphic structure D. The spectrum carries
a real structure ρ induced by complex conjugation: if a section ψ has monodromy h the
section ψj has monodromy h̄.

In the description of surface geometry via solutions to a Dirac operator with potential the
spectrum already appeared in the papers of Taimanov [22], and Grinevich and Schmidt [9],
and its relevance to the Willmore problem can be seen in [20, 23] and [3, 2].

The present paper analyzes the structure of the spectrum Spec(W,D) of a quaternionic line
bundle W with holomorphic structure D of degree zero over a 2–torus. Due to ellipticity
the family Dω, parametrized over harmonic 1–forms Harm(T 2,C), is a holomorphic family
of Fredholm operators. The minimal kernel dimension of such a family is generic and
attained on the complement of an analytic subset. In Sections 2 and 3 we show that for
a degree zero bundle over a 2–torus these operators have index(Dω) = 0, their generic
kernel dimension is zero, and the spectrum Spec(W,D) ⊂ Hom(Γ,C∗) is a 1–dimensional
analytic set. The spectrum can therefore be normalized h : Σ → Spec(W,D) to a Riemann

surface Σ, the spectral curve. Moreover, for generic ω ∈ S̃pec(W,D) the kernel of Dω is
1–dimensional and therefore ker(Dω) gives rise to a holomorphic line bundle L, the kernel
bundle, over the spectral curve Σ. The fiber of L over a generic point σ ∈ Σ is the space
of holomorphic sections of W with monodromy hσ ∈ Spec(W,D). The real structure ρ on
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the spectral curve Σ induced by ρ(h) = h̄ is covered by multiplication by j on the kernel
bundle L and therefore has no fixed points.

Physical intuition suggests that for large monodromies the spectrum should be asymptotic
to the vacuum spectrum Spec(W, ∂̄). That this is indeed the case we show in Section 4.
Since the vacuum is described by complex holomorphic sections with monodromy it is a
translate of the curve

exp(H0(K)) ∪ exp(H0(K)) ⊂ Hom(Γ,C∗)

with double points along the lattice of real representations. We show that outside a
sufficiently large compact subset of Hom(Γ,C∗) the spectrum is a graph over the vacuum,
at least away from the double points. Near a double point the spectrum can have a handle.
Depending on whether an infinite or finite number of handles appear, the spectral curve
has infinite genus, is connected and has one end, or its genus is finite, it has two ends and
at most two components.

For a generic holomorphic line bundle W the spectral curve Σ will have infinite genus and
algebro–geometric techniques cannot be applied. This motivates us to study the case of
finite spectral genus in Section 5 in more detail. The end behavior of the spectrum then
implies that outside a sufficiently large compact set in Hom(Γ,C∗) none of the double
points of the vacuum get resolved into handles. Therefore, we can compactify the spectral
curve Σ by adding two points o and ∞ at infinity which are interchanged by the real
structure ρ. Because the kernel bundle is asymptotic to the kernel bundle of the vacuum,
the generating section ψσ ∈ H0(W̃ ) with monodromy hσ of Lσ has no zeros for σ in a
neighborhood of o or ∞. We show that the complex structures Sσ defined via Sσψσ = ψσi
are a holomorphic family limiting to ±J when σ tends to o and ∞, where J is the complex
structure of our quaternionic holomorphic line bundle W . Thus, S extends to a T 2-family
of algebraic functions Σ → CP1 on the compactification Σ = Σ∪{o,∞}. Pulling back the
tautological bundle over CP1 the family S gives rise to a linear T 2–flow of line bundles
in the Picard group of Σ. Finally we give a formula for the Willmore energy W in terms
of the residue of the logarithmic derivative of h and the conformal structure of T 2. This
formula allows various interpretations of the Willmore energy including an interpretation
as the convergence speed of the spectrum to the vacuum spectrum.

During the preparation of this paper the authors profited from conversations with Martin
Schmidt and Iskander Taimanov.

2. The Spectrum of a Quaternionic Holomorphic Line Bundle

In this section we summarize the basic notions of quaternionic holomorphic geometry [8]
in as much as they are relevant for the purposes of this paper. We also recall the basic
definitions and properties of the spectrum of a holomorphic line bundle which, from a
surface geometric point of view, can also be found in [3].

2.1. Preliminaries. Let W be a quaternionic (right) vector bundle over a Riemann sur-
face M . A complex structure J on W is a section J ∈ Γ(End(W )) with J2 = − Id, or,
equivalently, a decomposition W = W+ ⊕W− into real subbundles which are invariant
under multiplication by the quaternion i and interchanged by multiplication with the
quaternion j: the ±i–eigenbundle of J is W±. Note that W+ and W− are isomorphic via
multiplication by j as vector bundles with complex structures J|W±

. The degree of the
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quaternionic bundleW with complex structure J is defined as the degree degW := degW+

of the underlying complex vector bundle W+.

A quaternionic holomorphic structure on a quaternionic vector bundle W equipped with
a complex structure J is a quaternionic linear operator

D : Γ(W ) → Γ(K̄W )

that satisfies the Leibniz rule D(ψλ) = (Dψ)λ+ (ψdλ)′′ for all ψ ∈ Γ(W ) and λ : M → H

where (ψdλ)′′ = 1
2(ψdλ + J ∗ ψdλ) denotes the (0, 1)–part of the W–valued 1–form ψdλ

with respect to the complex structures J on W and ∗ on TM∗. Decomposing the operator
D into J commuting and anti–commuting parts gives D = ∂̄+Q where ∂̄ = ∂̄⊕ ∂̄ is the
double of a complex holomorphic structure on W+ and Q ∈ Γ(K̄ End−(W )) is a (0, 1)–
form with values in the complex anti–linear endomorphisms of W (with complex structure
post–composition by J), called the Hopf field.

The space of holomorphic sections of W is denoted by H0(W ) = ker(D). Because D
is an elliptic operator its kernel H0(W ) is finite dimensional if the underlying surface is
compact. The L2–norm

W(W ) = W(W,D) = 2

∫

M
< Q ∧ ∗Q >

of the Hopf field Q is called the Willmore energy of the holomorphic bundleW where < , >
denotes the real trace pairing on End(W ). The special case Q = 0, for which W(W ) = 0,
describes (doubles of) complex holomorphic bundles W ∼= W+ ⊕W+.

2.2. The quaternionic spectrum of quaternionic holomorphic line bundles. A
holomorphic structure D on W induces a quaternionic holomorphic structure on the pull-
back bundle W̃ = π∗W by the universal covering π : M̃ → M . The operator D on W̃ is
periodic with respect to the group Γ of deck transformations of π : M̃ → M . The space
H0(W ) of holomorphic sections of W are the periodic, that is, Γ–invariant, sections of W̃
solving Dψ = 0. In the following we also need to consider solutions with monodromy of
Dψ = 0. Such solutions are the holomorphic sections of W̃ that satisfy

(2.1) γ∗ψ = ψhγ for all γ ∈ Γ,

where h ∈ Hom(Γ,H∗) is a representation of Γ. A holomorphic section ψ ∈ H0(W̃ )
satisfying (2.1) for some h ∈ Hom(Γ,H∗) is called a holomorphic section with monodromy

h of W , and we denote the space of all such sections by H0
h(W̃ ). By the quaternionic

Plücker formula with monodromy (see appendix to [3]) H0
h(W̃ ) is a finite dimensional

real vector space. Multiplying ψ ∈ H0
h(W̃ ) by some λ ∈ H∗ yields the section ψλ with

monodromy λ−1hλ. Unless h is a real representation H0
h(W̃ ) is not a quaternionic vector

space.

Definition 2.1. Let W be a quaternionic line bundle with holomorphic structure D over
a Riemann surface M . The quaternionic spectrum of W is the subspace

SpecH(W,D) ⊂ Hom(Γ,H∗)/H∗

of conjugacy classes of monodromy representations occurring for holomorphic sections of
W̃ . In other words, h represents a point in SpecH(W,D) if and only if there is a non–trivial

holomorphic section ψ ∈ H0(W̃ ) with monodromy h, that is, a solution of

Dψ = 0 satisfying γ∗ψ = ψhγ for all γ ∈ Γ.
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Our principal motivation for studying the quaternionic spectrum is the observation [3]
that Darboux transforms of a conformal immersion f : M → S4 correspond to nowhere
vanishing holomorphic sections with monodromy of a certain quaternionic holomorphic
line bundle induced by f . From this point of view the quaternionic spectrum arises as
a parameter space for the space of Darboux transforms. The quaternionic holomorphic
line bundle induced by f : M → S4 is best described when viewing S4 = HP1 as the
quaternionic projective line. The immersion f is the pull–back L of the tautological line
bundle over HP1 and as such a subbundle L ⊂ H2 of the trivial quaternionic rank 2 bundle.
The induced quaternionic holomorphic line bundle is the quotient bundle W = V/L
equipped with the unique holomorphic structure for which constant sections of V project
to holomorphic sections of V/L.

The idea of defining spectra of conformal immersions first appears, for tori in R3, in the
work of Taimanov [22], and Grinevich and Schmidt [9]. Their definition leads to the
same notion of spectrum although it is based on a different quaternionic holomorphic line
bundle associated to a conformal immersion into Euclidean 4–space R4 via the Weierstrass
representation [17].

2.3. The spectrum of a quaternionic holomorphic line bundle over a 2–torus.

From here on we study the geometry of SpecH(W,D) in the case that the underlying
surface is a torus T 2 = R2/Γ. Due to the abelian fundamental group π1(T

2) = Γ every
representation h ∈ Hom(Γ,H∗) of the group of deck transformations can be conjugated
into a complex representation in Hom(Γ,C∗). The complex representation h ∈ Hom(Γ,C∗)
in a conjugacy class in Hom(Γ,H∗) is uniquely determined up to complex conjugation
h 7→ h̄ (which corresponds to conjugation by the quaternion j). In particular, away from
the real representations, the map

Hom(Γ,C∗) → Hom(Γ,H∗)/H∗

is 2 : 1. The lift of the quaternionic spectrum SpecH(W,D) of W under this map gives
rise to the spectrum of the quaternionic holomorphic line bundle W .

Definition 2.2. Let W be a quaternionic holomorphic line bundle over the torus with
holomorphic structure D. Its spectrum is the subspace

Spec(W,D) ⊂ Hom(Γ,C∗)

of complex monodromies occurring for non–trivial holomorphic sections of W̃ .

By construction, the spectrum is invariant under complex conjugation ρ(h) = h̄ and

(2.2) SpecH(W,D) = Spec(W,D)/ρ.

The study of Spec(W,D) is greatly simplified by the fact that G = Hom(Γ,C∗) is an
abelian Lie group with Lie algebra g = Hom(Γ,C) whose exponential map exp: g → G is
induced by the exponential function C → C∗. The Lie algebra Hom(Γ,C) is isomorphic
to the space Harm(T 2,C) of harmonic 1–forms: a harmonic 1–form ω gives rise to the
period homomorphism γ ∈ Γ 7→

∫
γ ω. The image under the exponential map of such a

homomorphism is the multiplier γ 7→ hγ = e
R

γ
ω. The kernel of the group homomorphism

exp is the lattice of harmonic forms Γ∗ = Harm(T 2, 2πiZ) with integer periods. The
exponential function thus induces an isomorphism

(2.3) Harm(T 2,C)/Γ∗ ∼= Hom(Γ,C∗) .
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Rather than Spec(W,D) we study its logarithmic image which is the Γ∗–invariant subset

S̃pec(W,D) ⊂ Harm(T 2,C), the logarithmic spectrum, with the property that

(2.4) Spec(W,D) ∼= S̃pec(W,D)/Γ∗.

Considering S̃pec(W,D) has the advantage that it is described as the locus of those ω ∈
Harm(T 2,C) for which the operator

(2.5) Dω = e−
R

ω ◦D ◦ e
R

ω : Γ(W ) → Γ(K̄W ) ,

given by Dωψ = (D(ψe
R

ω))e−
R

ω where ψ ∈ Γ(W ), has a non–trivial kernel. Here

e
R

ω ∈ Hom(R2,C∗) is regarded as a gauge transformation on the universal cover R2.
Nevertheless, the operator Dω is still well defined on the torus T 2 because the Leibniz
rule of a quaternionic holomorphic structure implies

(2.6) Dω(ψ) = Dψ + (ψω)′′ .

The operatorDω is elliptic but due to the term (ψω)′′ in (2.6) only a complex linear (rather
then quaternionic linear) operator between the complex rank 2 bundlesW and K̄W , where
the complex structure I is given by right multiplication I(ψ) = ψi by the quaternion i.

A section ψ ∈ Γ(W ) is in the kernel of Dω if and only if the section ψe
R

ω ∈ Γ(W̃ ) is in

the kernel of D, that is, ψe
R

ω ∈ H0(W̃ ) is holomorphic. Because the section ψe
R

ω has

monodromy h = e
R

ω, we obtain the I–complex linear isomorphism

(2.7) kerDω → H0
h(W̃ ) : ψ 7→ ψe

R

ω.

In particular, a representation h = e
R

ω is in the spectrum Spec(W,D) if and only if Dω

has non–trivial kernel and therefore

(2.8) S̃pec(W,D) = {ω ∈ Harm(T 2,C) | kerDω 6= 0}.

Since Dω is a holomorphic family of elliptic operators the general theory of holomorphic
families of Fredholm operators (see Proposition 3.1) implies that the logarithmic spectrum

S̃pec(W,D) is a complex analytic subset of Hom(Γ,C) ∼= C2 and that Spec(W,D) is a
complex analytic subset of Hom(Γ,C∗) ∼= C∗ × C∗. It turns out that the dimension of
Spec(W,D) ⊂ Hom(Γ,C∗) depends on the degree d = deg(W ) of W :

dim(Spec(W,D)) = 2 if d > 0,

dim(Spec(W,D)) = 1 if d = 0,

dim(Spec(W,D)) = 0 if d < 0.

The case d 6= 0 is dealt with in the following lemma. The case d = 0 is the subject of the
rest of this paper.

Lemma 2.3. Let (W,D) be a quaternionic holomorphic line bundle of degree deg(W ) 6= 0
over a torus T 2. Then

a) Spec(W,D) = Hom(Γ,C∗) if deg(W ) > 0 and
b) Spec(W,D) is a finite subset of Hom(Γ,C∗) if deg(W ) < 0.

Proof. The Fredholm index Index(Dω) = dim(ker(Dω)) − dim(coker(Dω)) (see the proof
of Lemma 2.4 in Section 3.1 for more details) of the elliptic operator Dω depends only
on the first order part. Therefore Index(Dω coincides with the Fredholm index of the
operator ∂̄ which, by the Riemann Roch theorem, is given by

(2.9) Index(Dω) = Index(∂̄) = 2(d− g + 1) = 2d,



8 CHRISTOPH BOHLE, FRANZ PEDIT, AND ULRICH PINKALL

where d denotes the degree of W and the genus g = 1 for the torus T 2. The factor 2 comes
from the fact that ∂̄ is the direct sum of complex ∂̄–operators on W ∼= W+ ⊕W+. To
prove b) we use the quaternionic Plücker formula with monodromy (see appendix to [3])
which shows that

1

4π
W(W,D) ≥ −d(n+ 1) + ord(H))

for every (n + 1)–dimensional linear system H ⊂ H0(W̃ ) with monodromy. This implies
that for d < 0 only a finite number of h ∈ Spec(W,D) admit non–trivial holomorphic
sections with monodromy. �

In case W = V/L is the quaternionic holomorphic line bundle induced by a conformal
immersion f : T 2 → S4 of a torus into the conformal 4–sphere the degree d = deg(V/L) is
half of the normal bundle degree deg(⊥f ), see [3]. In particular, for immersions into the
conformal 3–sphere S3 the degree of the induced bundle V/L is always zero.

2.4. Spectral curves of degree zero bundles over 2–tori. Throughout the rest of
the paper we assume that W is a quaternionic holomorphic line bundle of degree zero
over a torus T 2. The following lemma shows that in this case the logarithmic spectrum

S̃pec(W,D), and hence the spectrum Spec(W,D), is a 1–dimensional analytic subset. This
allows to normalize the spectrum to a Riemann surface, the spectral curve.

Lemma 2.4. Let (W,D) be a quaternionic holomorphic line bundle of degree zero over a
torus T 2. Then:

a) The logarithmic spectrum S̃pec(W,D) is a 1–dimensional analytic set in Harm(T 2,C) ∼=
C2 invariant under translations by the lattice Γ∗. Its normalization is the Riemann

surface Σ̃ that admits a surjective holomorphic map ω : Σ̃ → S̃pec(W,D) which, on the
complement of a discrete set, is an injective immersion.

b) The normalization Σ̃ carries a complex holomorphic line bundle L̃ which is a holomor-

phic subbundle (in the topology of C∞ convergence) of the trivial Γ(W )–bundle over Σ̃.

The fibers of L̃ satisfy L̃σ̃ ⊂ kerDω(σ̃) for all σ̃ ∈ Σ̃ with equality away from a discrete

set in Σ̃.

The fact that L̃ is a holomorphic line subbundle of the trivial Γ(W )–bundle with respect
to the Frechet topology of C∞–convergence means that a local holomorphic section ψ ∈
H0(L̃|U ) can be viewed as a C∞–map

ψ : U × T 2 →W ∼= T 2 × C2 (σ̃, p) 7→ ψσ̃(p)

which is holomorphic in σ̃ ∈ U ⊂ Σ̃. Here W is the trivial C2–bundle with the complex
structure given via quaternionic right multiplication by i.

The lemma is proven in Section 3.1 by asymptotic comparison of the holomorphic families
of elliptic operators Dω and ∂̄ω. This analysis shows that the spectrum Spec(W,D) of D
asymptotically looks like the spectrum Spec(∂̄,W ) of ∂̄, the vacuum spectrum.

Because the spectrum Spec(W,D) = S̃pec(W,D)/Γ∗ is the quotient of the logarithmic
spectrum by the dual lattice, Lemma 2.4 implies that Spec(W,D) ⊂ Hom(Γ,C∗) also is a

1–dimensional analytic set. The normalization of Spec(W,D) is the quotient Σ = Σ̃/Γ∗

with normalization map h : Σ → Spec(W,D) induced from ω : Σ̃ → S̃pec(W,D) via h =
exp(

∫
ω).
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Definition 2.5. Let (W,D) be a quaternionic holomorphic line bundle of degree zero
over a torus. The spectral curve Σ of W is the Riemann surface normalizing the spectrum
h : Σ → Spec(W,D).

The spectral curve of a conformal immersion f : T 2 → S4 with trivial normal bundle is
[3] the spectral curve of the induced quaternionic holomorphic line bundle W = V/L.

As proven in Section 4, the spectral curve Σ of a degree zero quaternionic holomorphic
line bundle W is a Riemann surface with either one or two ends, depending on whether
its genus is infinite or finite. In the former case it is connected, in the latter case it has at
most two components, each containing at least one of the ends.

The bundle L̃ can be realized as a complex holomorphic subbundle of the trivial H0(W̃ )–
bundle (with respect to C∞–convergence on compact subsets on the universal covering

R2) over Σ̃ by the embedding

L̃ → H0(W̃ ) ψσ̃ ∈ L̃σ̃ 7→ ψσ̃e
R

ωσ̃ .

This line subbundle of H0(W̃ ) is invariant under the action of Γ∗ and hence descends to a

complex holomorphic line bundle L → Σ. The fibers of L satisfy Lσ ⊂ H0
hσ(W̃ ) for σ ∈ Σ

and equality holds away from a discrete set of points in Σ.

Recall that the spectrum Spec(W,D) ⊂ Hom(Γ,C∗) is invariant under the conjugation
ρ(h) = h̄. The map ρ lifts to an anti–holomorphic involution ρ : Σ → Σ of the spectral
curve Σ that satisfies h ◦ ρ = h̄. For every σ ∈ Σ and ψ ∈ Lσ, the section ψj is a
holomorphic section with monodromy hρ(σ) = h̄σ of W̃ . For generic σ ∈ Σ, we have
Lρ(σ) = H0

hρ(σ)(W̃ ) such that ψj ∈ Lρ(σ) and

Lρ(σ) = Lσj .

By continuity the latter holds for all σ ∈ Σ. This shows that the anti–holomorphic
involution ρ : Σ → Σ is covered by right multiplication with j acting on L and thus has
no fixed points. The following theorem summarizes the discussion so far:

Theorem 2.6. The spectrum Spec(W,D) of a quaternionic holomorphic line bundle
(W,D) of degree zero over a torus is a 1–dimensional complex analytic set. Its spectral
curve, the Riemann surface Σ normalizing the spectrum h : Σ → Spec(W,D), is equipped
with a fixed point free anti–holomorphic involution ρ : Σ → Σ satisfying h ◦ ρ = h̄.

There is a complex holomorphic line bundle L → Σ over Σ, the kernel bundle, which is
a subbundle of the trivial bundle Σ ×H0(W̃ ) with the property that Lσ ⊂ H0

hσ(W̃ ) for all
σ ∈ Σ with equality away from a discrete set in Σ. The bundle L is compatible with the
real structure ρ : Σ → Σ in the sense that ρ∗L = Lj.

The quotient Σ/ρ with respect to the fixed point free involution ρ is the normalization
of the quaternionic spectrum SpecH(W,D). If Σ is connected, Σ/ρ is a “non–orientable
Riemann surface”.

3. Asymptotic Analysis

This section is concerned with a proof of Lemma 2.4 and some preparatory results needed
in Section 4 to analyze the asymptotic geometry of the spectrum Spec(W,D).

The results of Sections 3 and 4 are obtained by asymptotically comparing the kernels
of the holomorphic family of elliptic operators Dω to those of the holomorphic family
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of elliptic operators ∂̄ω arising from the “vacuum” (W, ∂̄). For large multipliers, that
is, for multipliers in the complement of a compact subset of Hom(Γ,C∗), the spectrum
Spec(W,D) is a small deformation of the vacuum spectrum Spec(∂̄,W ) away from double
points of Spec(∂̄,W ) where handles may form. The detailed study of the asymptotic
geometry of Spec(W,D) will then be carried out Section 4.

3.1. Holomorphic families of Fredholm operators and the proof of Lemma 2.4.

The following proposition, combined with Corollary 3.9 proven at the end of this section,
will yield a proof of Lemma 2.4.

Proposition 3.1. Let F (λ) : E1 → E2 be a holomorphic family of Fredholm operators
between Banach spaces E1 and E2 parameterized over a connected complex manifold M .
Then the minimal kernel dimension of F (λ) is attained on the complement of an analytic
subset N ⊂ M . If M is 1–dimensional, the holomorphic vector bundle Kλ = ker(F (λ))
over M\N extends through the set N of isolated points to a holomorphic vector subbundle
of the trivial E1–bundle over M .

Proof. For λ0 ∈ M there are direct sum decompositions E1 = E′
1 ⊕ K1 and E2 = E′

2 ⊕
K2 into closed subspaces such that K1 is the finite dimensional kernel of F (λ0) and E′

2
its image. The Hahn–Banach theorem ensures that the finite dimensional kernel of a
Fredholm operator can be complemented by a closed subspace. The fact that the image
of an operator of finite codimension m is closed follows from the open mapping theorem:
for every complement, the restriction of the operator to E′

1 can be linearly extended
to a bijective operator from E′

1 ⊕ Cm to E2 = E′
2 ⊕ K2 that respects the direct sum

decomposition.

With respect to such a direct sum decomposition, the operators F (λ) can be written as

F (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
,

with A(λ) invertible for all λ ∈ U contained in an open neighborhood U ⊂ M of λ0. For
all λ ∈ U we have

F (λ)

(
A(λ)−1 −A(λ)−1B(λ)

0 IdC

)

︸ ︷︷ ︸
=:G(λ)

=




IdE′
2

0

C(λ)A(λ)−1 D(λ) − C(λ)A(λ)−1B(λ)︸ ︷︷ ︸
=:F̃ (λ)


 .

Because all G(λ) are invertible, the kernel of F (λ) is G(λ) applied to ker(F̃ (λ)). Because

F̃ (λ) : K1 → C is an operator between finite dimensional spaces whose index coincides with
that of F (λ), the proposition immediately follows from its finite dimensional version: the

analytic set N is given by the vanishing of all r×r–subdeterminants of F̃ (λ), where r is the

maximal rank of F̃ (λ) for λ ∈ U . For a proof that, in the case of a 1–dimensional parameter
domain, the bundle of kernels extends through the points in N , see e.g. Lemma 23 of [4].

�

Corollary 3.2. If Index(F (λ)) = 0, the analytic set N0 = {λ ∈ M | ker(F (λ)) 6= 0} can
be locally described as the vanishing locus of a single holomorphic function.

Proof. We may assume N0 6= M . Then N0 = N , with N as in Proposition 3.1, and
therefore locally described as the set of λ for which F̃ (λ) has a non–trivial kernel. But
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Index(F (λ)) = 0 implies that F̃ (λ) is an r0 × r0–matrix with r0 = dim(K) = dim(C) such

that N0 is locally given as the vanishing locus of the determinant of F̃ (λ). �

In order to show that S̃pec(W,D) ⊂ Hom(Γ,C) is a complex analytic set, it is sufficient –
by the preceding corollary – to extend the family of elliptic operators Dω to a holomorphic
family of Fredholm operators defined on a Banach space containing Γ(W ) such that the
kernels of the extensions coincide with those of Dω. Corollary 3.9 below implies that

S̃pec(W,D) is neither empty nor the whole space and thus has to be 1–dimensional.

Moreover, by applying Proposition 3.1 to Dω pulled back by the normalization ω : Σ̃ →

S̃pec(W,D) ⊂ Harm(T 2,C), Corollary 3.9 shows that the kernel of Dω is 1–dimensional

for generic ω ∈ S̃pec(W,D) and therefore the kernel bundle is a line bundle over Σ̃.

Proof of Lemma 2.4. For every integer k ≥ 0 the operators Dω extend to bounded op-
erators from the (k + 1)th–Sobolev space Hk+1(W ) of sections of W to the kth–Sobolev
space Hk(K̄W ) of sections of K̄W . By elliptic regularity (see e.g. Theorem 6.30 and
Lemma 6.22a of [24]), for every k the kernel of the extension to Hk+1(W ) is contained
in the space Γ(W ) of C∞–sections and therefore coincides with the kernel of the original
elliptic operator Dω : Γ(W ) → Γ(K̄W ).

The extension of an elliptic operator on a compact manifold to suitable Sobolev spaces is
always Fredholm: its kernel is finite dimensional (see e.g. [24], p.258) and so is its cokernel,
the space dual to the kernel of the adjoint elliptic operator. The Fredholm index

Index(Dω) = dim(ker(Dω)) − dim(coker(Dω))

of Dω depends only on the symbol so that by (2.9)

Index(Dω) = Index(∂̄) = 2d

where d is the degree of W .

By assumption d = 0 and therefore Corollary 3.2 implies that S̃pec(W,D) is a complex
analytic set locally given as the vanishing locus of one holomorphic function in two complex

variables. To see that S̃pec(W,D) is 1–dimensional it suffices to check that S̃pec(W,D) is
neither empty nor all of Harm(T 2,C) which will be proven in Corollary 3.9. This corollary

also shows that there is ω ∈ S̃pec(W,D) for which ker(Dω) is 1–dimensional. Applying

Proposition 3.1 toDω pulled back to the Riemann surface Σ̃ normalizing S̃pec(W,D) shows

that, for generic ω ∈ Σ̃, the kernel of Dω 1–dimensional. The unique extension of ker(Dω)
through the isolated points with higher dimensional kernel thus defines a holomorphic line
bundle L̃ → Σ̃.

Due to elliptic regularity the kernel of the extension of Dω to the Sobolev space Hk+1(W )
for every integer k ≥ 0 is already contained in Γ(W ). In particular, the kernels of the Dω

do not depend on k and define a line subbundle L̃ of the trivial Γ(W )–bundle over Σ̃. For

every k ≥ 0 the line bundle L̃ is a holomorphic line subbundle of the trivial Hk+1(W )–
bundle and therefore a holomorphic line subbundle of the trivial Γ(W )–bundle where
Γ(W ) is equipped with the Frechet topology of C∞–convergence. �

3.2. Functional analytic setting. In the following we develop the asymptotic analy-
sis needed to prove Corollary 3.9. For further applications in Sections 4 and 5 it will
be convenient to view Dω as a family of unbounded operators on the Wiener space of
continuous sections of W with absolutely convergent Fourier series (instead of viewing
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it as unbounded operators Dω : Γ(W ) ⊂ L2(W ) → L2(W ) which would be sufficient for
proving Corollary 3.9).

In order to work in the familiar framework of function spaces and to simplify the appli-
cation of Fourier analysis, we fix a uniformizing coordinate z on the torus T 2 = C/Γ and
trivialize the bundle W . The latter can be done since the degree of W or, equivalently,
of the complex line subbundle Ŵ = {v ∈ W | Jv = vi}, is zero. To trivialize W we

choose a parallel section ψ ∈ Γ(Ŵ ) of a suitable flat connection: let ∇̂ be the unique

flat quaternionic connection on W which is complex holomorphic, that is, ∇̂J = 0 and

∇̂′′ = ∂̄, and which has unitary monodromy ĥγ = e−b̄0γ+b0γ̄ when restricted to Ŵ , where

h ∈ Hom(Γ,C∗). Then the connection ∇̂− b̄0dz+ b0dz̄ on Ŵ is trivial and we can choose

a parallel section ψ ∈ Γ(Ŵ ) which in particular satisfies ∂̄ ψ = −ψb0dz.

The choices of uniformizing coordinate z and trivializing section ψ induce isomorphisms

C∞(T 2,C2) → Γ(W ) , (u1, u2) 7→ ψ(u1 + ju2)

and
C∞(T 2,C2) → Γ(K̄W ) , (u1, u2) 7→ ψdz̄(u1 + ju2) .

Moreover, via

(3.1) ω = (a+ b̄0)dz + (b+ b0)dz̄,

the space Harm(T 2,C) is coordinatized by (a, b) ∈ C2. Under these isomorphisms the
family of operators Dω defined in (2.5) takes the form

(3.2) Da,b = ∂̄a,b +M

with

∂̄a,b =

(
∂
∂z̄ + b 0

0 ∂
∂z + a

)
and M =

(
0 −q̄
q 0

)
,

where q ∈ C∞(T 2,C) is the smooth complex function defined by Qψ = ψjdzq. We denote
by

S̃ = {(a, b) ∈ C2 | ker(Da,b) 6= 0}

and

S̃0 = {(a, b) ∈ C2 | ker(∂̄a,b) 6= 0}

the coordinate versions of the logarithmic spectrum S̃pec(W,D) and logarithmic vacuum

spectrum S̃pec(∂̄,W ).

In the following we equip the space l1 = l1(T 2,C2) of C0–functions with absolutely con-
vergent Fourier series with the Wiener norm, the l1–norm

(3.3) ‖u‖ =
∑

c∈Γ′

|u1,c| + |u2,c|

of the Fourier coefficients of

u(z) =

(
∑

c∈Γ′

u1,c e
−c̄z+cz̄,

∑

c∈Γ′

u2,c e
−c̄z+cz̄

)
∈ l1(T 2,C2),

where Γ′ ⊂ C denotes the lattice

Γ′ = {c ∈ C | −c̄γ + cγ̄ ∈ 2πiZ for all γ ∈ Γ}.

The Banach space l1 contains C∞ = C∞(T 2,C2) as a dense subspace (in fact, it contains
all H2–functions, cf. the proof of the Sobolev lemma 6.22 in [24]). Since the inclusion
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l1(T 2,C2) → C0(T 2,C2) is bounded l1–convergence implies C0–convergence and in par-
ticular pointwise convergence. We will use those facts in the applications in Sections 4
and 5.

3.3. Da,b and ∂̄a,b as closable operators C∞ ⊂ l1 → l1. We will show that all operators
in the holomorphic families Da,b and ∂̄a,b are closable as unbounded operators C∞ ⊂ l1 →
l1. The following proposition applied to Da,b and ∂̄a,b then allows to compare their kernels
by comparing their resolvents.

Proposition 3.3. Let F : D(F ) ⊂ E → E be a closed operator on a Banach space and
let σ(F ) = σ1 ∪̇σ2 be a decomposition of its spectrum into two closed sets such that there
exists an embedded closed curve γ : S1 → ρ(F ) = C\σ(F ) enclosing σ1. Then the bounded
operator

P :=
1

2πi

∫

γ
(λ− F )−1dλ

is a projection, its range E1 is a subset of D(F ), the kernel E2 = ker(P ) has E2 ∩D(F )
as a dense subspace and both E1 and E2 are invariant subspaces with σ(F|Ei

) = σi for
i = 1, 2. Moreover, P commutes with every operator that commutes with F .

For a proof of this proposition see [19], Theorems XII.5 and XII.6.

Recall that an unbounded operator F : D(F ) ⊂ E → E is closed if the graph norm
‖v‖F := ‖v‖ + ‖Fv‖ is a complete norm on its domain D(F ). For example, if F is a first
order elliptic operator F , the extension of the unbounded operator F : C∞ ⊂ L2 → L2 to
the Sobolev space H1 is closed, because the graph norm is equivalent to the first Sobolev
norm (by Gardings inequality, see e.g. [24], 6.29). Elliptic regularity (see e.g. Theorem 6.30
and Lemma 6.22a of [24]) shows that this closure F : H1 ⊂ L2 → L2 has the same kernel
as the original operator F : C∞ → C∞.

In the following we treat Da,b and ∂̄a,b as unbounded operators C∞ ⊂ l1 → l1 and show
(in Lemma 3.5 below) that they also admit closures with kernels in C∞. We will define
these closures by taking suitable restrictions of the respective L2–closures H1 ⊂ L2 → L2.
For this we need the following lemma.

Lemma 3.4. Let l1 = l1(T 2,C2) be the Banach space of absolutely convergent Fourier
series with values in C2 equipped with the Wiener norm (3.3). Then:

a) The multiplication by a 2 × 2–matrix whose entries are functions with absolutely
convergent Fourier series (e.g., C∞–functions) yields a bounded endomorphism of
l1 whose operator norm is the maximal Wiener norm of the matrix entries.

b) A linear operator P ⊂ l1 → l1 defined on the subspace P of Fourier polynomi-
als with the property that all Fourier monomials are eigenvectors extends to a
bounded operator if and only if its eigenvalues are bounded. Its operator norm is
the supremum of the moduli of its eigenvalues.

Proof. A linear operator F defined on the space of Fourier polynomials with values in
the Wiener space of absolutely convergent Fourier series uniquely extends to a bounded
endomorphism of Wiener space if it is bounded on the basis vk, k ∈ I, of Fourier monomials
of length 1:

‖F
∑

k

vkλk‖ ≤
∑

k

‖Fvk‖|λk| ≤ C
∑

k

|λk| = C‖
∑

k

vkλk‖ ,
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where C is such that ‖Fvk‖ ≤ C. This proves the claim, because a bounded operator
defined on a dense subspace of a Banach space has a unique extension to the whole space.
The operator norm of the extension is then the supremum of the ‖Fvk‖. �

Let F be the extension to the Sobolev space H1 of one of the operators Da,b or ∂̄a,b.
The space D(F ) = {v ∈ l1 ∩ H1 | F (v) ∈ l1} ⊃ C∞ does not depend on the choice
of F by Lemma 3.4 a) because the operators Da,b and ∂̄a,b differ (3.2) by the bounded
endomorphism M of l1. Similarly, when F is replaced by the extension of another of the
operators Da,b and ∂̄a,b in the family, the graph norm of F : D(F ) ⊂ l1 → l1 is replaced
by an equivalent norm on D(F ). The space D1 := D(F ) ⊂ l1 is thus equipped with an
equivalence class of norms with respect to which all the operators Da,b and ∂̄a,b extend to
bounded operators D1 → l1. In order to see that theses extensions are closed it suffices
to check that one of the l1–graph norms is complete. We do this by showing that, for

(a, b) ∈ C2\ S̃0, the operator ∂̄a,b extends to a bounded operator ∂̄a,b : D
1 → l1 which is

injective, surjective, and has a bounded inverse (∂̄a,b)
−1 : l1 → D1.

The kernels of the family of operators ∂̄a,b—and hence the logarithmic vacuum spectrum

S̃0—are easily understood: the Schauder basis of l1 given by the Fourier monomials
vc = (ec̄z−cz̄, 0) and wc = (0, e−c̄z+cz̄) with c ∈ Γ′ is a basis of eigenvectors of all operators
∂̄a,b, (a, b) ∈ C2, the eigenvalue of vc being b− c and that of wc being a− c̄. In particular,
the space of (a, b) for which ∂̄a,b has a non–trivial kernel is

(3.4) S̃0 = (C × Γ′) ∪ (Γ̄′ × C).

The kernel of ∂̄a,b is 1–dimensional for generic (a, b) ∈ S̃0. Exceptions are the double points
(a, b) ∈ Γ̄′ × Γ′ for which the kernel is 2–dimensional and the corresponding multiplier

hγ = e(a+b̄0)γ+(b+b0)γ̄ is real (see also the discussion at the beginning of Section 4.1).

For (a, b) ∈ C2\ S̃0, the operator ∂̄a,b : D
1 → l1 is injective. Denote by Ga,b the unique

bounded endomorphism of l1 extending the operator on the space P of Fourier polynomials
that is defined by Ga,b(vc) = (b − c)−1vc and Ga,b(wc) = (a − c̄)−1wc. This unique
extension exists by Part b) of Lemma 3.4 (and is compact because it can be approximated
by finite rank operators). The injective endomorphism Ga,b maps l1 to the space D1 and
is surjective as an operator Ga,b : l

1 → D1, because D1 is the subspace of H1 of elements

u(z) =
∑

c∈Γ′

u1,cv−c + u2,cwc

for which not only
∑

c∈Γ′

|u1,c| + |u2,c| <∞ but also
∑

c∈Γ′

|b+ c||u1,c| + |a− c̄||u2,c| <∞.

In particular, Ga,b is not only a compact endomorphisms of l1, but a bounded operator
(l1, ‖.‖l1) → (D1, ‖.‖∂̄a,b

), because the graph norm of Ga,b(u) for u ∈ l1 is

‖Ga,b(u)‖∂̄a,b
= ‖Ga,b(u)‖ + ‖ ∂̄a,bGa,b(u)‖ = ‖Ga,b(u)‖ + ‖u‖.

Because
∂̄a,bGa,b = Idl1 ,

the injective operator ∂̄a,b : D
1 → l1 is also surjective. This proves

Lemma 3.5. For (a, b) ∈ C2\ S̃0, the operator ∂̄a,b is a bijective operator from D1 to l1

with bounded inverse Ga,b = ∂̄
−1
a,b : l

1 → D1. In particular, for all (a, b) ∈ C2 the operators
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Da,b and ∂̄a,b extend to closed operators D1 ⊂ l1 → l1, because their graph norms on D1

are complete.

3.4. Two lemmas about the asymptotics of Da,b. In the asymptotic analysis we

make use of an additional symmetry of the logarithmic vacuum spectrum S̃0, the sym-
metry induced by the action of the lattice Γ′ by quaternionic linear, J–commuting gauge
transformations

Tc =

(
e−c̄z+cz̄ 0

0 ec̄z−cz̄

)
, c ∈ Γ′.

Under this gauge the operators Da,b = ∂̄a,b +M and ∂̄a,b, (a, b) ∈ C2, transform according
to

Da+c̄,b+c = T−1
c (∂̄a,b +MT−2c)Tc ,(3.5)

∂̄a+c̄,b+c = T−1
c (∂̄a,b)Tc .(3.6)

The induced Γ′–action on C2 is the action of c ∈ Γ′ by

(3.7) (a, b) 7→ (a+ c̄, b+ c)

which is a symmetry of the logarithmic vacuum spectrum S̃0, but not of the logarithmic

spectrumS̃. In contrast to this, under the Γ′–action by the gauge transformations

tc =

(
e−c̄z+cz̄ 0

0 e−c̄z+cz̄

)
, c ∈ Γ′,

both Da,b and ∂̄a,b, (a, b) ∈ C2, transform by the same formula

Da−c̄,b+c = t−1
c (Da,b)tc(3.8)

∂̄a−c̄,b+c = t−1
c (∂̄a,b)tc.(3.9)

The induced Γ′–action on C2 with c ∈ Γ′ acting by

(3.10) (a, b) 7→ (a− c̄, b+ c)

is thus a symmetry of both S̃ and S̃0. This action is a coordinate version of the Γ∗–action

in Section 2 and the corresponding symmetry of S̃ and S̃0 is the periodicity obtained by
passing from the spectrum to the logarithmic spectrum.

Instead of Da,b = ∂̄a,b+M we consider more generally the operators ∂̄a,b +MT−2c with

c ∈ Γ′ which also extend to closed operators D1 ⊂ l1 → l1. If (a, b) ∈ C2\ S̃0, then

(3.11) ∂̄a,b+MT−2c = (Id +MT−2cGa,b) ∂̄a,b

where, by Lemma 3.4, the operator Id+MT−2cGa,b is a bounded endomorphisms of l1.
Corollary 3.7 below show that Id +MT−2cGa,b is invertible if c is sufficiently large.

The following uniform estimate lies at the heart of the asymptotic analysis.

Lemma 3.6. Let Ω ⊂ C2\ S̃0 be compact. For every δ > 0 there exists R > 0 such that

‖Ga,bMT−2cGa,b‖ ≤ δ

for all (a, b) ∈ Ω and all c ∈ Γ′ with |c| ≥ R.
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Proof. We use that the operators ∂̄a,b and Ga,b are diagonal with respect to the Schauder
basis vc, wc of l1. By Part b) of Lemma 3.4, for all (a, b) ∈ Ω the norm of the operator
Ga,b satisfies

‖Ga,b‖ ≤ C :=
1

min{C1, C2}
,

where the minima C1 := min{|a− c̄|} > 0 and C2 := min{|b− c|} > 0 over all c ∈ Γ′ and

(a, b) ∈ Ω are positive, because Ω ⊂ C2\ S̃0 is compact.

Choosing R′ such that |a − c̄| ≥ 3C‖M‖/δ and |b − c| ≥ 3C‖M‖/δ for all (a, b) ∈ Ω and
c ∈ Γ′ with |c| > R′ yields a decomposition Ga,b = G0

a,b + G∞
a,b with G0

a,b = Ga,b ◦ PR′

and G∞
a,b = Ga,b −G0

a,b, where PR′ denotes the projection on Span{vc, wc | |c| ≤ R′} with

respect to the splitting l1 = Span{vc, wc | |c| ≤ R′} ⊕ Span{vc, wc | |c| > R′}. Then
‖G∞

a,b‖ ≤ δ
3C‖M‖ and the operator G0

a,b takes values in the image of PR′ and vanishes on

the kernel of PR′ .

M =

(
0 −q̄
q 0

)
with smooth q so that its Fourier series q(z) =

∑
c∈Γ′ qce

−c̄z+cz̄ con-

verges uniformly and there is R′′ such that q∞ =
∑

c∈Γ′,|c|>R′′ qce
−c̄z+cz̄ has Wiener norm∑

c∈Γ′,|c|>R′′ |qc| <
δ

3C2 . This yields the decomposition M = M0 +M∞ where

M∞ =

(
0 −q̄∞
q∞ 0

)
and M0 =

(
0 −q̄0
q0 0

)

with q0 = q − q∞. By Part a) of Lemma 3.4, ‖M∞‖ ≤ δ
3C2 and the operator M0 is the

multiplication by a Fourier polynomial.

For |c| ≥ R := R′+R′′ we have G0
a,bM

0T−2cG
0
a,b = 0 and hence, because the shift operator

T−2c is an isometry of l1,

‖Ga,bMT−2cGa,b‖ = ‖G∞
a,bMT−2cGa,b +G0

a,bMT−2cG
∞
a,b +G0

a,bM
∞T−2cG

0
a,b‖ ≤ δ.

�

Corollary 3.7. For every δ > 0 and every compact Ω ⊂ C2\ S̃0 there exists R > 0 such
that for all c ∈ Γ′ with |c| ≥ R and (a, b) ∈ Ω the operator ∂̄a,b +MT−2c is invertible and

‖Ga,b − (∂̄a,b +MT−2c)
−1‖ ≤ δ.

Proof. We use that if an endomorphisms F of a Banach space satisfies ‖Fn‖ < 1 for
some power n, the operator Id +F is invertible with inverse given by the Neumann series∑∞

k=0(−1)kF k, and

(3.12) ‖(Id +F )−1‖ ≤
1

1 − ‖Fn‖
(1 + ‖F‖ + ...+ ‖Fn−1‖).

By Lemma 3.6 we can choose R > 0 such that, for all for c ∈ Γ′ with |c| > R and (a, b) ∈ Ω,

‖Ga,bMT−2cGa,b‖ ≤ min{ 1
2‖M‖ ,

δ
2(1+G‖M‖)},

whereG = max(a,b)∈Ω ‖Ga,b‖. Because T−2c is an isometry of l1, for c ∈ Γ′ with |c| > R and

(a, b) ∈ Ω, the operator MT−2cGa,b satisfies ‖(MT−2cGa,b)
2‖ < 1/2. Thus Id+MT−2cGa,b
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and therefore ∂̄a,b +MT−2c = (Id+MT−2cGa,b)∂̄a,b are invertible and

‖Ga,b − (∂̄a,b +MT−2c)
−1‖ = ‖Ga,b(Id−(Id +MT−2cGa,b)

−1)‖

= ‖Ga,bMT−2cGa,b(

∞∑

k=0

(−1)k(MT−2cGa,b)
k)‖ .

Together with (3.12) this implies

‖Ga,b − (∂̄a,b +MT−2c)
−1‖ ≤ ‖Ga,bMT−2cGa,b‖

1 + ‖Ga,b‖‖M‖

1 − ‖(MT−2cGa,b)2‖
< δ.

�

The preceding corollary shows in particular that, for every (a, b) /∈ S̃0, the operator
∂̄a,b +MT−2c = (Id +MT−2cGa,b)∂̄a,b is invertible if c ∈ Γ′ is large enough and moreover
that (∂̄a,b + MT−2c)

−1 converges to Ga,b = (∂̄a,b)
−1 when |c| → ∞. The convergence is

uniform for (a, b) ∈ Ω in a compact set Ω ⊂ C2\ S̃0. This is needed in the proof of the
following lemma.

Lemma 3.8. Let δ > 0 and Ω ⊂ C2\ S̃0 compact. Then there exists R > 0 such that

1.) ∂̄a,b +MT−2c is invertible for all (a, b) ∈ Ω and all c ∈ Γ′ with |c| > R.
2.) For every “transversal circle” γ = {(a+λ, b+λ) | |λ| = ǫ} in Ω with radius ǫ > 0,

center (a, b) ∈ C2, and for all c ∈ Γ′ with |c| > R, the operators

P cγ =
1

2πi

∫

|λ|=ǫ
(∂̄a+λ,b+λ +MT−2c)

−1dλ and P∞
γ =

1

2πi

∫

|λ|=ǫ
Ga+λ,b+λdλ

are projections and satisfy ‖P cγ − P∞
γ ‖ < δ.

The operator P∞
γ projects to the finite dimensional sum im(P∞

γ ) =
⊕

(ã,b̃)∈D ker(∂̄ ã,b̃) with

D the “transversal disc” D = {(a + λ, b + λ) ∈ C2 | |λ| < ǫ} bounded by the circle γ. If
δ < 1, for every c ∈ Γ′ with |c| > R the operator P cγ projects to a finite dimensional space
whose dimension coincides with that of im(P∞

γ ) and which is spanned by the kernels of all

iterates of ∂̄ã,b̃+MT−2c with (ã, b̃) ∈ D.

The notion transversal circle and transversal disc reflects the fact that, away from double

points of S̃0, the intersection of a transversal disc D with S̃0 is transversal.

Proof. By Corollary 3.7, there is R > 0 such that for all (a, b) ∈ Ω and all c ∈ Γ′ with |c| >
R the operator ∂̄a,b +MT−2c is invertible and ‖Ga,b − (∂̄a,b +MT−2c)

−1‖ < 2δ/diam(Ω).
For every transversal circle γ = {(a+λ, b+λ) | |λ| = ǫ} ⊂ Ω and every c ∈ Γ′ with |c| > R,
the operators P cγ and P∞

γ are then well defined and satisfy ‖P cγ−P
∞
γ ‖ < 2ǫδ/diam(Ω) < δ.

Proposition 3.3 shows that they are projection operators.

As one can easily check by evaluation on the Fourier monomials vc and wc, the operator

P∞
γ projects to the space spanned by the kernels of ∂̄ ã,b̃ for all (ã, b̃) ∈ D∩ S̃0. This space

is finite dimensional, because D ∩ S̃0 is a finite set.

If δ < 1, for every c ∈ Γ′ with |c| > R the operator (Id−P cγ + P∞
γ ) is invertible and maps

im(P cγ ) = ker(Id−P cγ ) to a subspace of im(P∞
γ ). Similarly, (Id−P∞

γ + P cγ ) is invertible
and maps im(P∞

γ ) = ker(Id−P∞
γ ) to a subspace of im(P cγ ). This shows that im(P cγ ) and
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im(P∞
γ ) have the same dimension. In particular, the space im(P cγ ) is also finite dimen-

sional. By Proposition 3.3 the finite dimensional image of P cγ is an invariant subspace for

the operator ∂̄a,b +MT−2c and the restriction of ∂̄a,b +MT−2c to this subset has spectrum
contained in {|λ| < ǫ}. The image of P cγ is thus the direct sum of the kernels of all iterates

of ∂̄ ã,b̃+MT−2c with (ã, b̃) ∈ D. �

Corollary 3.9. There is a point (a, b) ∈ C2 such that ker(Da,b) is 0–dimensional and

there is a point (ã, b̃) ∈ C2 such that ker(Dã,b̃) is 1–dimensional.

Proof. Let (a, b) ∈ S̃0 be a point such that the kernel of ∂̄a,b is 1–dimensional and choose
ǫ > 0 such that the closure of the transversal disc D = {(a + λ, b + λ) ∈ C2 | |λ| < ǫ}

intersects S̃0 in (a, b) only. By Lemma 3.8 there is R > 0 such that for all c ∈ Γ′ with

|c| > R there is a unique point (ã, b̃) ∈ D for which the kernel of ∂̄ã,b̃ +MT−2c not trivial,

but 1–dimensional. By (3.5) this implies that, for all c ∈ Γ′ with |c| > R, there is a unique

point (ã, b̃) ∈ S̃ contained in the disc {(a+ c̄+ λ, b+ c+ λ) ∈ C2 | |λ| < ǫ} and the kernel

of Dã,b̃ at that point (ã, b̃) ∈ S̃ is 1–dimensional. �

Corollary 3.9 completes the above proof of Lemma 2.4 (and hence the proof of Theo-
rem 2.6).

4. Asymptotic Geometry of Spectral Curves

We investigate the asymptotic geometry of the spectrum Spec(W,D), the spectral curve Σ,
and the kernel bundle L → Σ of a quaternionic holomorphic line bundle (W,D = ∂̄+Q)
of degree zero over a 2–torus. We show that the spectrum Spec(W,D) is asymptotic to
the vacuum spectrum Spec(W, ∂̄). As a consequence asymptotically the spectral curve Σ
is bi–holomorphic to a pair of planes joined by at most countably many handles.

4.1. Statement of the main result. Recall that the vacuum spectrum Spec(W, ∂̄) is a
real translate of

exp(H0(K)) ∪ exp(H0(K̄)),

see (3.4) or Section 3.2 of [3]. Its double points are the real representations

Spec(W, ∂̄) ∩ Hom(Γ,R∗).

If exp(
∫
ω) = exp(

∫
η̄) ∈ Hom(Γ,C∗) with ω, η ∈ H0(K), then ω = η and ω − ω̄ ∈ Γ∗

since 1-forms in the dual lattice are always imaginary. On the other hand, for every
ω ∈ Harm(T 2,C) the representation exp(

∫
ω) ∈ Hom(Γ,C∗) has a unique decomposition

exp(
∫
ω) = exp(

∫
ω+ω̄

2 ) exp(
∫
ω−ω̄

2 ) into R+– and S1–representations the latter of which
is real if and only if ω − ω̄ ∈ Γ∗, that is, if it is a Z2–representation. This shows that the
subgroup

G′ = {h ∈ Hom(Γ,R∗) | h = exp(
∫
ω) with ω ∈ H0(K), ω − ω̄ ∈ Γ∗}

of G = Hom(Γ,C∗) acts simply transitive on the set of vacuum double points.

We now come to the main theorem describing the structure and asymptotics of the spec-
trum and the kernel line bundle.

Theorem 4.1. Let (W,D) be a quaternionic holomorphic line bundle of degree zero over
a torus. Then (with respect to a fixed bi–invariant metric on Hom(Γ,C∗)):
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(1) For every ǫ > 0, there exists a compact set Ω ⊂ Hom(Γ,C∗) and a neighborhood U of
a vacuum double point in Spec(W, ∂̄) ∩ Hom(Γ,R∗) such that
a) in the complement of Ω, the spectrum Spec(W,D) is contained in an ǫ–tube around

the vacuum spectrum Spec(W, ∂̄);
b) in the complement of Ω and away from the neighborhood

⋃
h∈G′ hU of the vac-

uum double points, the spectrum Spec(W,D) is a “graph” over Spec(W, ∂̄). More
precisely, Spec(W,D) is locally a graph over a real translate of exp(H0(K)) or
exp(H0(K̄)) with respect to coordinates induced, via the exponential map, from the
splitting Hom(Γ,C) ∼= Harm(T 2,C) = H0(K) ⊕H0(K̄);

c) in the neighborhood hU , h ∈ G′, of a vacuum double point that is contained in
the complement of Ω, the intersection of the spectrum Spec(W,D) with hU either
consists of one handle, that is, is equivalent to an annulus, or it consists of two
transversally immersed discs which have a double point at a real multiplier.

In particular, in the complement of Ω, the spectrum Spec(W,D) is non–singular except
at real points which are transversally immersed double points. Moreover, for all h ∈
Spec(W,D) ∩ (Hom(Γ,C∗)\Ω) either

dim(H0
h(W̃ )) = 1 or dim(H0

h(W̃ )) = 2

depending on whether h ∈ (Hom(Γ,C∗)\Hom(Γ,R)) or h ∈ Hom(Γ,R).
(2) The spectral curve Σ is the union

Σ = Σcpt ∪ Σ∞

of two ρ–invariant Riemann surfaces Σcpt and Σ∞ with the following properties:
a) both Σcpt and Σ∞ have a boundary consisting of two circles along which they are

glued, that is, ∂Σcpt = −∂Σ∞;
b) Σcpt is compact with at most two components each of which has a non–empty

boundary;
c) Σ∞ consists of two planes, each with a disc removed, which are joined by a countable

number of handles.
In particular, either the spectral curve Σ has infinite genus, one end and is connected,
or it has finite genus, two ends and at most two connected components, each containing
an end. In the finite genus case, both ends are interchanged by the involution ρ : Σ →
Σ.

(3) Given ǫ > 0 and δ > 0, the compact set Ω and the open set U in (1) can be chosen
with the following additional properties:
a) defined on the preimage V under Σ̃ → Spec(W,D) of

Spec(W,D) ∩
(
Hom(Γ,C∗)\(Ω ∪

⋃

h∈G′

hU)
)
,

there is a holomorphic section ψ of L̃ → Σ̃ that is “δ–close to a vacuum solution”.
By this we mean that

‖ψ − ϕ‖ < δ

for ϕ a nowhere vanishing, locally constant section defined over V of the triv-
ial Γ(W )–bundle over Σ̃ that for every σ̃ ∈ V ⊂ Σ̃ solves ∂̄ω ϕ

σ̃ = 0 with ω ∈

S̃pec(W, ∂̄) satisfying ‖ω(σ̃) − ω‖ < ǫ.

b) Let h ∈ G′ such that the preimage under Σ̃ → Spec(W,D) of

Spec(W,D) ∩ (Hom(Γ,C∗)\Ω) ∩ hU
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is the sum of two discs. Then ψ holomorphically extends through these discs and
the extension is again δ–close to vacuum solutions.

4.2. Proof of the main result. Theorem 4.1 is a consequence of the following three lem-
mas below: Lemma 4.2 shows that, for large multipliers, the spectrum is contained in an
ǫ–tube around the vacuum spectrum with respect to a bi–invariant metric on Hom(Γ,C∗).
Lemma 4.3 shows that, for large multipliers and away from double points of the vacuum,
the spectrum is a graph over the vacuum spectrum. Lemma 4.6 shows that, for large
multipliers, in a neighborhood of a vacuum double point the spectrum either consists of
an annulus or of a pair of discs with a double point.

We continue using the (a, b)–coordinates (3.1) on the Lie algebra Hom(Γ,C) ∼= Harm(T 2,C)
of Hom(Γ,C∗). In these coordinates the logarithmic vacuum spectrum is

S̃0 = (C × Γ′) ∪ (Γ̄′ × C)

with the set of double points Γ̄′×Γ′, see (3.4). The preimages under the exponential map
of points in Hom(Γ,C∗) are the orbits of the Γ′–action (a, b) 7→ (a − c̄, b + c) for c ∈ Γ′

on C2, see (3.10). In order to define fundamental domains for this group action, we fix a
basis c1, c2 of Γ′ of vectors of minimal length. Then both

A = {(a, b) | a ∈ C and b = λ1c1 + λ2c2 with λi ∈ [−1/2, 1/2]} and

B = {(a, b) | b ∈ C and a = λ1c̄1 + λ2c̄2 with λi ∈ [−1/2, 1/2]}
(4.1)

are fundamental domains for the Γ′–action (3.10): orbits of generic points (a, b) ∈ C2

intersect A and B in a single point, only the orbits of boundary points of A and B intersect
several times. For understanding Spec(W,D) ⊂ Hom(Γ,C∗) it is sufficient to study the

intersection of S̃ with the fundamental domain B. To understand the intersection with A
it is sufficient to apply the involution ρ, in our coordinates given by (a, b) 7→ (b̄, ā), which

interchanges A and B and leaves S̃ invariant.

To investigate the intersection S̃ ∩B we use (3.7) and (3.10): under the Γ′–action by the
gauge transformation tcTc the operator Da,b transforms according to

(4.2) Da,b+2c = t−1
c T−1

c (∂̄a,b +MT−2c)tcTc for every c ∈ Γ′

while the fundamental domain B is invariant under the action (a, b) 7→ (a, b+2c) of c ∈ Γ′.

The following lemma shows that, for large multipliers, the spectrum Spec(W,D) lies in
an ǫ–tube around the vacuum spectrum Spec(W, ∂̄).

Lemma 4.2. For every ǫ > 0, there is a compact subset of B in the complement of which

the intersection of S̃ with B is contained in an ǫ–tube around S̃0.

Proof. For ǫ > 0 with 2ǫ < min{|c| | c ∈ Γ′\{0}} we define

S̃
ǫ

0 = {(a, b) | |a− c̄| < ǫ for c ∈ Γ′} ∪ {(a, b) | |b− c| < ǫ for c ∈ Γ′}.(4.3)

For B′ = {(a, b) ∈ B | b = λ1c1 +λ2c2 with λi ∈ [−1, 1]} we have B =
⋃
c∈Γ′(B′ + (0, 2c)).

The set Ω = B′\ S̃
ǫ

0 is compact and does not intersect S̃0. Hence, by Corollary 3.7, there is
R > 0 such that for all (a, b) ∈ Ω and every c ∈ Γ′ with |c| > R, the kernel of ∂̄a,b+MT−2c

and, by (4.2), that of Da,b+2c is zero. This shows that S̃ does not intersect
⋃
c∈Γ′;|c|>R(Ω+

(0, 2c)) or, equivalently, that the intersection of S̃ with the subset
⋃
c∈Γ′;|c|>R(B′ +(0, 2c))

of B is contained in the ǫ–tube S̃
ǫ

0 around S̃0. �
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The next lemma and remark show that, away from the double points of the vacuum spec-
trum Spec(∂̄,W ), for large enough multipliers the spectrum Spec(W,D) is an arbitrarily
small deformation of Spec(∂̄,W ).

Lemma 4.3. For ǫ > 0 and δ > 0 with 2ǫ < min{|c| | c ∈ Γ′\{0}} and δ < 1 there exists
R > 0 such that:

a) The intersection of S̃ with

{|a| < ǫ} ×
( ⋃

c∈Γ′;|c|>R

(∆ǫ + 2c)
)
⊂ C2

is the graph of a holomorphic function b 7→ a(b) defined on
⋃
c∈Γ′;|c|>R(∆ǫ + 2c) ⊂ C

with ∆ǫ = {b = λ1c1 + λ2c2 | λj ∈ [−1, 1] and |b− c| > ǫ for all c ∈ Γ′}. For all points
(a, b) ∈ C2 contained in this graph, the kernel of Da,b is 1–dimensional and, in particu-
lar, the resulting multiplier is non–real, that is, an element of Hom(Γ,C∗)\Hom(Γ,R∗).

b) The bundle L̃ → Σ̃ admits a holomorphic section ψ which is defined over the preimage

under the normalization map Σ̃ → S̃ of the subset described in a) and has the property

that, for every σ̃ in this preimage, the section ψσ̃ ∈ L̃σ̃ satisfies

‖ψσ̃ − ψo‖ < δ,

where ‖ ‖ denotes the Wiener norm and ψo = (0, 1) is the Fourier monomial contained
in the kernel of ∂̄0,b for all b ∈ C.

Remark 4.4. The analogous result for the a–plane is obtained by applying the anti–

holomorphic involution ρ: for ǫ, δ, andR as in Lemma 4.3, the intersection of S̃ with the set⋃
c∈Γ′;|c|>R(∆̄ǫ+2c̄)×{|b| < ǫ} is the graph of a function a 7→ b(a) over

⋃
c∈Γ′;|c|>R(∆̄ǫ+2c̄).

Setting ψσ̃ = −ψρ(σ̃)j, the holomorphic section ψ from Lemma 4.3, b) yields a holomor-

phic section of L̃ defined on the part of Σ̃ which is graph over
⋃
c∈Γ′;|c|>R(∆̄ǫ + 2c̄). This

section satisfies ‖ψσ̃ − ψ∞‖ < δ for ψ∞ = −ψoj = (1, 0).

Proof. Let ǫ̃ = 1
5ǫ and Ω = Bǫ\ S̃

ǫ̃

0 with S̃
ǫ̃

0 as defined in (4.3) and

Bǫ = {(a, b) ∈ B | dist((a, b), B′) ≤ ǫ},

where as above B′ = {(a, b) ∈ B | b = λ1c1 + λ2c2 with λi ∈ [−1, 1]}. By Lemma 3.8 we
can chose R > 0 such that, for every c ∈ Γ′ with |c| > R, the operator ∂̄a,b+MT−2c is
invertible for all (a, b) ∈ Ω and ‖P cγ −P∞

γ ‖ < δ for all transversal circles γ ⊂ Ω. As in the

proof of Lemma 4.2, the intersection of S̃ with
⋃
c∈Γ′;|c|>R(Bǫ + (0, 2c)) is then contained

in the ǫ̃–tube S̃
ǫ̃

0 around S̃0.

For every b ∈ ∆4ǫ̃
2ǫ̃ with

(4.4) ∆ǫ2
ǫ1 = {b ∈ C | dist(b,∆) ≤ ǫ2 and |b− c| > ǫ1 for all c ∈ Γ′},

where ∆ = {b = λ1c1 +λ2c2 | λj ∈ [−1, 1]}, the transversal circle γb = {(λ, b+λ) | |λ| = ǫ̃}
is contained in Ω. The operator P∞

γb
projects to the one dimensional kernel of ∂̄0,b. Because

δ < 1, Lemma 3.8 implies that, if c ∈ Γ′ with |c| > R, the image of the projection P cγ
is the 1–dimensional kernel of ∂̄ã,b̃+MT−2c. Here (ã, b̃) ∈ D is the unique point in the

transversal disc D = {(λ, b + λ) | |λ| < ǫ̃} for which the kernel of ∂̄ã,b̃ +MT−2c is non–

trivial.
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By (4.2), for every b ∈
⋃
c∈Γ′;|c|>R(∆4ǫ̃

2ǫ̃+2c) ⊂ C the disc {(λ, b+λ) ∈ C2 | |λ| < ǫ̃} contains

a unique point in S̃. This defines a holomorphic function λ on
⋃
c∈Γ′;|c|>R(∆4ǫ̃

2ǫ̃ + 2c) with

|λ| < ǫ̃ and such that every point in the intersection S̃ ∩
(
{|a| < ǫ}×

⋃
c∈Γ′;|c|>R(∆3ǫ̃

3ǫ̃+2c)
)

is

of the form (λ(b), b+λ(b)) for some b ∈
⋃
c∈Γ′;|c|>R(∆4ǫ̃

2ǫ̃+2c). The Cauchy integral formula

for the first derivative of λ (applied to circles of radius 2ǫ̃) implies that the differential of
λ restricted to

⋃
c∈Γ′;|c|>R(∆2ǫ̃

4ǫ̃ + 2c) is bounded by 1/2. Because any two points b0 and

b1 in
⋃
c∈Γ′;|c|>R(∆2ǫ̃

4ǫ̃ + 2c) can be joined by a curve of length l ≤ π
2 |b0 − b1|, the following

proposition shows that the map b 7→ b+λ(b) restricted to
⋃
c∈Γ′;|c|>R(∆2ǫ̃

4ǫ̃+2c) is injective:

Proposition 4.5. Let f : U ⊂ Rn → Rn with ‖Dfx − Id ‖ ≤ ǫ for ǫ > 0 independent of
x ∈ U . If any two points x0, x1 ∈ U can be joined by a curve of length l ≤ C|x0 −x1| with
ǫ < 1/C, then f is injective and therefore a diffeomorphism from U to the open set f(U).

Proof. Assume f(x0) = f(x1) with x0 6= x1. Let γ : [0, 1] → U be a curve of length
l ≤ C|x0 − x1| with γ(0) = x0, γ(1) = x1 and constant speed |γ′(t)| = l . Then

|x0 − x1| = |

∫ 1

0
(f(γ(t)) − γ(t))′dt| ≤ l

∫ 1

0
‖Dfγ(t) − Id ‖dt ≤ C|x0 − x1|ǫ < |x0 − x1|.

This contradicts the assumption that x0 6= x1 such that f is injective. Because ǫ < 1/C
and 1/C < 1, the inverse function theorem implies that f is a local diffeomorphism. �

For every c ∈ Γ′ with |c| > R, the image of the boundary of (∆2ǫ̃
4ǫ̃ + 2c) under the map

b 7→ b + λ(b) is contained in (∆3ǫ̃
3ǫ̃ + 2c)\(∆ǫ̃

ǫ + 2c) such that the image of (∆2ǫ̃
4ǫ̃ + 2c) is a

subset of (∆3ǫ̃
3ǫ̃+2c) which contains (∆ǫ̃

ǫ+2c). Therefore, the injective function b 7→ b+λ(b)
maps

⋃
c∈Γ′;|c|>R(∆2ǫ̃

4ǫ̃ + 2c) onto a set containing
⋃
c∈Γ′;|c|>R(∆ǫ̃

ǫ + 2c). Taking its inverse

function µ restricted to
⋃
c∈Γ′;|c|>R(∆ǫ̃

ǫ + 2c) yields a representation of the intersection of

S̃ with {|a| < ǫ̃} ×
⋃
c∈Γ′;|c|>R(∆ǫ̃

ǫ + 2c) as the graph of the function a(b) = b− µ(b) over⋃
c∈Γ′;|c|>R(∆ǫ̃

ǫ + 2c).

For b ∈
⋃
c∈Γ′;|c|>R(∆ǫ̃

ǫ+2c) take b′ ∈ ∆2ǫ̃
4ǫ̃ and c ∈ Γ′ with |c| > R such that µ(b) = b′ +2c.

Then, by definition of P cγb′
and (4.2),

(4.5) Pb := t−1
c T−1

c (P cγb′
)tcTc =

1

2πi

∫

|λ|=ǫ̃
D−1
λ,µ(b)+λdλ.

In particular, the definition of Pb does not depend on the choice of the representation
µ(b) = b′ + 2c. Analogously, we define

P∞
b = t−1

c T−1
c (P∞

γb′
)tcTc =

1

2πi

∫

|λ|=ǫ̃
∂̄−1
λ,µ(b)+λdλ .

This projection operator is independent of b: its kernel contains all Fourier monomials
except the constant section ψo = (0, 1) ∈ C∞(T 2,C2) which spans its image, that is,
ψo = P∞

b (ψo). Since we have chosen R such that ‖Pb−P
∞
b ‖ < δ, the section ψσ̃ := Pb(ψ

o)

with σ̃ ∈ Σ̃ corresponding to (a(b), b) ∈ S̃ satisfies ‖ψσ̃ − ψo‖ < δ. �

The following lemma shows that, for large enough multipliers, in a neighborhood of a
vacuum double point the spectrum Spec(W,D) either has a double point or the vacuum
double point resolves into a handle.
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Lemma 4.6. Let ǫ > 0 and δ > 0 with 2ǫ < min{|c| | c ∈ Γ′\{0}} and δ < 1. Then there
exists R > 0 such that:

a) For every c0 ∈ Γ′ with c0 > 2R, the intersection of S̃ with the polydisc

{(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ}

is either bi–holomorphic to an annulus or to a pair of transversally intersecting im-
mersed discs with one intersection point. Each disk is a graph over one of the coordinate

planes. For a double point (a, b) of the spectrum S̃ contained in the polydisc, the kernel
of the operator Da,b is 2–dimensional and the corresponding multiplier is real; for all

other (a, b) ∈ S̃ contained in the polydisc, the kernel of Da,b is 1–dimensional and the
corresponding multiplier is non–real, that is, an element of Hom(Γ,C∗)\Hom(Γ,R∗).

b) The intersection of S̃ with {|a| < ǫ} ×
(⋃

c∈Γ′;|c|>R(∆ǫ/2 + 2c)
)
⊂ C2 is the graph of

a function b 7→ a(b) and the holomorphic section ψ of L̃ defined (as in Lemma 4.3)
over this set extends holomorphically through the discs around double points which are
graphs over the b–plane. The extension satisfies ‖ψσ̃ − ψo‖ < δ.

Remark 4.7. As in Remark 4.4, the analogous result for the part of the spectral curve
that is a graph over the a–plane can be obtained by applying the involution ρ.

Proof. Let ǫ̃ = ǫ
10 and Ω = B14ǫ̃\ S̃

ǫ̃

0 with Bǫ and S̃
ǫ̃

0 as in the proof of Lemma 4.3. By
Lemma 3.8, we can chose R > 0 such that for every c ∈ Γ′ with |c| > R the operator
∂̄a,b +MT−2c is invertible for all (a, b) ∈ Ω and ‖P cγ − P∞

γ ‖ < δ for all transversal circles

γ ⊂ Ω. As in the proof of Lemma 4.3, the intersection of the logarithmic spectrum S̃

with
⋃
c∈Γ′;|c|>R(B14ǫ̃ + (0, 2c)) is then contained in the ǫ̃–tube S̃

ǫ̃

0 around the vacuum

S̃0 and the intersection of S̃ with {|a| < ǫ} × (
⋃
c∈Γ′;|c|>R(∆ǫ

ǫ/2 + 2c)) is a graph over⋃
c∈Γ′;|c|>R(∆ǫ

ǫ/2 + 2c), with ∆ǫ2
ǫ1 as in (4.4).

For c0 ∈ Γ′, not in the same connected component of C\
⋃
c∈Γ′;|c|>R(∆ǫ

ǫ/2 + 2c) than the

origin, we examine the intersection S̃ ∩{(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ}. The part of

S̃ contained in {(a, b) ∈ C2 | |a| < ǫ and ǫ/2 < |b− c0| < ǫ} is then the graph of a function
b 7→ a(b) over {b | ǫ/2 < |b− c0| < ǫ} and, by Remark 4.4 and (3.10), the intersection of

S̃ with {(a, b) ∈ C2 | ǫ/2 < |a| < ǫ and |b − c0| < ǫ} is the graph of a function a 7→ b(a)
over {a | ǫ/2 < |a| < ǫ}.

We decompose c0 = c′ + 2c′′ into c′′ ∈ Γ′ with |c′′| > R and c′ = l1c1 + l2c2 for l1, l2 ∈
{0,±1}. For |x| < ǫ

2 define the transversal circle

γ̃x =
{
(0, c′) + (x,−x) + (λ, λ) | |λ| =

ǫ

2
+ ǫ̃
}

in Ω and the corresponding projection operator

P̃x = t−1
c′′ T

−1
c′′ (P c

′′

γ̃x
)tc′′Tc′′ =

1

2πi

∫

|λ|=
ǫ
2+ǫ̃

D−1
x+λ,c0−x+λ

dλ.

Moreover, for x with ǫ̃ < |x| < ǫ
2 define the transversal circles

γ1
x =

{
(0, c′) + (x,−x) + (−x+ µ1,−x+ µ1) | |µ1| = ǫ̃

}

γ2
x =

{
(0, c′) + (x,−x) + (x+ µ2, x+ µ2) | |µ2| = ǫ̃

}
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in Ω and the corresponding projection operators

P 1
x = t−1

c′′ T
−1
c′′ (P c

′′

γ1
x
)tc′′Tc′′ =

1

2πi

∫

|µ1|=ǫ̃
D−1
µ1,c0−2x+µ1

dµ1 and

P 2
x = t−1

c′′ T
−1
c′′ (P c

′′

γ2
x
)tc′′Tc′′ =

1

2πi

∫

|µ2|=ǫ̃
D−1

2x+µ2,c0+µ2
dµ2.

Using the holomorphicity of the resolvent in the definition of P cγ , by Stokes theorem we
obtain

(4.6) P̃x = P 1
x + P 2

x

for all x with ǫ̃ < |x| < ǫ
2 .

By Lemma 3.8, for all |x| < ǫ
2 the operator P̃x projects to a 2–dimensional space which

contains the span of the kernels of Da,b for all (a, b) ∈
{
(0, c0) + (x,−x) + (λ, λ) | |λ| <

ǫ
2 + ǫ̃

}
. For ǫ̃ < |x| < ǫ

2 , the operator P 1
x projects to the 1–dimensional kernel of Da,b with

(a, b) ∈
{
(0, c0)+ (x,−x)+ (−x+µ1,−x+µ1) | |µ1| < ǫ̃

}
the unique point for which Da,b

has a non–trivial kernel. Analogously, P 2
x projects to the 1–dimensional kernel of Da,b for

a unique (a, b) ∈
{
(0, c0) + (x,−x) + (x+ µ2, x+ µ2) | |µ2| < ǫ̃

}
.

This gives rise to a holomorphic family of polynomials px(λ) = λ2 + p1(x)λ + p2(x)
(the determinants of the operators Dx+λ,c0−x+λ restricted to the 2–dimensional images

of P̃x) defined on {x | |x| < ǫ
2} whose zeros describe those λ with |λ| < ǫ

2 + ǫ̃ for which
ker(Dx+λ,c0−x+λ) 6= {0}. If ǫ̃ < |x| < ǫ

2 , then (4.6) implies that, corresponding to the

images of P 1
x and P 2

x , the polynomial px has two different zeroes

(4.7) λ1(x) = −x+ µ1(x) and λ2(x) = x+ µ2(x)

with |µk(x)| < ǫ̃. The discriminant q(x) = p1(x)
2 − 4p2(x) of px vanishes exactly at those

x for which both zeroes coincide. Its total vanishing order on the set {x | |x| < ǫ
2} is

given by the winding number 1
2πi

∫
|x|=2ǫ̃ d(log(q)) of q restricted to |x| = 2ǫ̃. By (4.7), the

discriminant q(x) = (λ1(x) + λ2(x))
2 − 4λ1(x)λ2(x) restricted to |x| = 2ǫ̃ is homotopy

equivalent to 4x2 (the discriminant for the vacuum spectrum). Thus the total vanishing
order of the discriminant q on the disc |x| < ǫ/2 is two with zeros located in the disc
|x| < 2ǫ̃.

If the discriminant q has two zeros of order one, the intersection of S̃ with the open set
U = {(0, c0) + (x,−x) + (λ, λ) | |x| < 4ǫ̃, |λ| < ǫ

2 + ǫ̃} is non–singular and its projection
to the disc {|x| < 4ǫ̃} is a branched 2–fold covering with two branch points of order one.

Thus S̃ ∩U is an annulus whose subsets over 3ǫ̃ < |x| < 4ǫ̃, by (4.7), are contained in the
sets {(a, b) | |a| < ǫ and ǫ/2 < |b − c0| < ǫ} and {(a, b) | ǫ/2 < |a| < ǫ and |b − c0| < ǫ}
and therefore graphs over the a– and b–planes. Because U contains the intersection of the

polydisc {(a, b) ∈ C2 | |a| ≤ ǫ/2 and |b− c0| ≤ ǫ/2} with the ǫ̃–tube around S̃0, we obtain

that the intersection of S̃ with {(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ} is an annulus.

In case the discriminant q has one zero of order two, the intersection of S̃ with the open
set U = {(0, c0) + (x,−x) + (λ, λ) | |x| < 4ǫ̃, |λ| < ǫ

2 + ǫ̃} is a 2–fold covering of {|x| < 4ǫ̃}

with one double point over the zero of q. Thus, the intersection S̃ ∩U (and therefore also

S̃ ∩{(a, b) ∈ C2 | |a| < ǫ and |b−c0| < ǫ}) is normalized by two immersed discs which, near
their boundaries and hence everywhere, are graphs over the a– and b–plane, respectively.
The two discs intersect transversally, because, by the Cauchy integral formula for the first
derivative, they are graphs of functions a 7→ b(a) and b 7→ a(b) with small derivatives.
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I order to see that a double point of S̃ in {(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ} gives rise

to a real multiplier, we note that the involution (a, b) 7→ (b̄, ā) + (−c̄0, c0) leaves both S̃
and {(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ} invariant. Because there is at most one double

point of S̃ in the polydisc, the double point is a fixed point of this involution and hence
gives rise to a real multiplier. The kernel of Da,b at the double point is thus 2–dimensional

and coincides with the image of P̃x for x a zero of the discriminant q.

For all non–singular points (a, b) ∈ S̃ contained in the polydisc {(a, b) ∈ C2 | |a| <
ǫ and |b − c0| < ǫ}, the kernel of Da,b is 1–dimensional, because the vanishing order of
px(λ) seen as a function of two variables is greater or equal to the kernel dimension. This
completes the proof of part a) of the lemma.

To prove part b) of the lemma, we assume that the intersection of S̃ with the polydisc
{(a, b) ∈ C2 | |a| < ǫ and |b − c0| < ǫ} consists of two discs with one double point. The
functions λ1(x) and λ2(x) describing the roots of px for x ∈ {x | ǫ̃ < |x| < ǫ

2} then extend

to {x | |x| < ǫ
2} and define parametrizations of the normalization Σ̃ of S̃ in a neighborhood

of (0, c0).

For every x ∈ {x ∈ C | |x| < ǫ
2}, the operator P̃x projects to the sum L̃σ1(x)⊕L̃σ2(x), where

σj(x) ∈ Σ̃, j = 1, 2 are lifts of (0, c0)+(x,−x)+(λj(x), λj(x)) ∈ S̃. Denote by ψ
σj

j , j = 1, 2,

nowhere vanishing local holomorphic sections of L̃ defined on {σj(x) ∈ Σ̃ | |x| < ǫ
2}. Then

P̃xψ
o = ψ

σ1(x)
1 f1(x)+ψ

σ2(x)
2 f2(x) for holomorphic functions f1, f2, where as in Lemma 4.3,

we set ψo = (0, 1). By (4.6) we have

(4.8) P 1
xψ

o = ψ
σ1(x)
1 f1(x)

for all x ∈ {x | ǫ̃ < |x| < ǫ
2}.

Because x 7→ c0 − x + λ1(x) is bijective near the boundary of {x | |x| < ǫ
2} (which

parametrizes a piece of S̃ which is a graph over the b–plane) it is bijective everywhere.
It maps {x | |x| < ǫ

2} onto an open subset of {b | |b − c0| < ǫ + ǫ̃} which contains
{b | |b − c0| < 9ǫ̃}. Denote by b 7→ x(b) the inverse of x 7→ c0 − x + λ1(x) restricted to
{b | |b − c0| < 9ǫ̃}. Then Pb = P 1

x(b) for all b ∈ {b | 5ǫ̃ < |b − c0| < 9ǫ̃}, where Pb is

the operator defined in (4.5). This allows to extend the holomorphic section ψσ̃ = Pbψ
o

defined in Lemma 4.3 to the disc {σ̃1(x(b)) ∈ Σ̃ | |b−c0| < 9ǫ̃} whose image in S̃ is a graph

over {b | |b − c0| < 9ǫ̃}: for the points σ̃ ∈ Σ̃ over b in the annulus 5ǫ̃ < |b − c0| < 9ǫ̃ we

have ψσ1(x(b)) = Pbψ
o = P 1

x(b)ψ
o such that, by (4.8), the section ψ

σ1(x(b))
1 f1(x(b)) defines

an extension to the disc over {b | |b− c0| < 9ǫ̃}. The maximum principle implies that this
extension still satisfies ‖ψσ̃ − ψ0‖ < δ. �

Proof of Theorem 4.1. Parts 1) and 3) of the theorem are mere reformulations of Lem-
mas 4.2, 4.3 and 4.6 and Remarks 4.4 and 4.7. The decomposition Σ = Σcpt ∪ Σ∞ in
Part 2) is also an immediate consequence of Lemmas 4.3 and 4.6 and Remarks 4.4 and 4.7,
because the spectral curve Σ cannot have compact components: on such a compact com-
ponent the harmonic function log |hγ | had to be constant for all γ ∈ Γ. But this would
imply that the normalization map h : Σ → Hom(Γ,C∗) is constant on this component
which is impossible for an analytic set of dimension one. Therefore, each component of Σ
contains at least one end for which h goes to infinity and the number of components of Σ
is bounded by the number of ends.
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Asymptotically, away form the vacuum double points, the spectrum Spec(W,D) is a small
deformation of the vacuum Spec(W, ∂̄) and hence bi–holomorphic to two planes with
neighborhoods around the vertices of of Z2–lattices removed. The number of ends of Σ
depends on the number of handles in Spec(W,D) near large vacuum double points: if
there are infinitely many handles the spectral curve Σ has one end, infinite genus and is
connected. If the number of handles is finite, then Σ has two ends, at most two components
each of which contains an end, and has finite genus. �

4.3. The connection approach to the spectral curve. The spectral curve Σ of a
quaternionic holomorphic line bundle (W,D) of degree zero contains a subset Σ∇ ⊂ Σ that
can be characterized in terms of flat connections adapted to the quaternionic holomorphic
structure D. This point of view is advantageous when studying spectral curves of finite
genus.

Definition 4.8. For a quaternionic holomorphic line bundle W of degree zero over a
torus, we define Σ∇ ⊂ Σ to be the subset of all points σ ∈ Σ for which non-zero elements
ψσ ∈ Lσ in the fiber over σ of the kernel line bundle L → Σ are nowhere vanishing
holomorphic sections with monodromy of W .

Lemma 4.9. The subset Σ∇ is a non–empty open neighborhood of the ends of Σ, that is,
the complement Σ \ Σ∇ is compact.

Proof. The fact that L̃ is a subbundle in the Frechet topology of C∞–convergence implies
that every point σ ∈ Σ∇ has a neighborhood in Σ on which the non–trivial elements of
L → Σ are nowhere vanishing sections with monodromy of W . This shows that Σ∇ is
open.

To see that Σ∇ is a neighborhood of the ends, note that the holomorphic section ψ, which
has been constructed in Lemmas 4.3 and 4.6, is nowhere vanishing. Therefore it is sufficient
to check that, for a point σ on a handle joining the two planes in Σ∞ and corresponding
to a large enough multiplier, a non–trivial section ψ ∈ Lσ is nowhere vanishing. Using
the notation in the proof of Lemma 4.6 a non–trivial section ψ ∈ L̃σ̃ with σ̃ ∈ Σ̃ close to a
large vacuum double point (0, c) can be written as ψ = P̃x(ψ

∞ua + ψoub) for some point
x and ua, ub ∈ C. Without loss of generality, we can assume |ua| + |ub| = 1. Applying
Lemma 4.6 with δ = 1/2 now shows that, in a neighborhood of a large enough vacuum
double point,

‖ψ − ψ∞ua − ψoub‖ < δ(|ua| + |ub|) <
1
2

which implies that the section ψ has no zeroes. �

Remark 4.10. There are two important special cases of quaternionic holomorphic line
bundles (W,D) of degree zero for which Σ∇ = Σ. The first is the case when the bundle
(W,D) carries a flat connection ∇ which is a Willmore connection [8] and adapted to D,
that is, which satisfies the Willmore condition d∇ ∗ Q = 0 and D = ∇′′. The spectral
curve can then be interpreted as the holonomy eigenline curve of the associated family
∇µ of flat connections [8] which means that there is a holomorphic function µ : Σ → C∗,
a 2–fold branched covering, such that every non–trivial element ψσ ∈ Lσ in the fiber of L
over σ ∈ Σ is a ∇µσ–parallel section and hence a nowhere vanishing holomorphic section
with monodromy of W , see [8] or Section 6 of [2]. Note that trivial Willmore connections
on a rank 1 bundle correspond to harmonic maps from T 2 to S2.

The second is the case when the quaternionic holomorphic line bundle W is the bundle
W = V/L induced by a conformal immersion f : T 2 → S4 with Willmore functional



THE SPECTRAL CURVE OF A QUATERNIONIC HOLOMORPHIC LINE BUNDLE OVER T 2 27

W < 8π. In this situation Σ∇ = Σ is essentially a consequence of Lemma 2.8 of [3].
What remains to be verified is that a non–trivial section ψσ0 ∈ Lσ0 over a point σ0 ∈ Σ
belonging to the trivial multiplier hσ0 = 1 is nowhere vanishing. If such a section ψσ0 had
a zero p one could construct a 2–dimensional linear system with Jordan monodromy all of
whose sections vanish at the point p by taking the span of ψσ0 and ∂ψσ

∂σ |σ=σ0
+ πϕ. Here

ψσ is a local holomorphic section of L and πϕ the projection to W = V/L of a parallel

section of V such that ∂ψσ

∂σ |σ=σ0
+ πϕ vanishes at p. The quaternionic Plücker formula

with monodromy [3] would then contradict W < 8π.

Definition 4.11. For σ ∈ Σ∇ define the quaternionic connection ∇σ and the complex
structure Sσ ∈ Γ(End(W )) on W by setting

(4.9) ∇σψσ = 0 and Sσψσ = ψσi ,

where ψσ ∈ Lσ is a non–trivial element of the fiber Lσ and therefore a nowhere vanishing
holomorphic section with monodromy of W .

By definition, the connection ∇σ is flat and compatible with Sσ and D, i.e., for σ ∈ Σ∇

(4.10) ∇σSσ = 0 and D = (∇σ)′′.

The real structure ρ : Σ → Σ leaves ∇σ invariant and changes the sign of Sσ, that is,

(4.11) ∇ρ(σ) = ∇σ and Sρ(σ) = −Sσ.

By choosing a local holomorphic section ψσ of the holomorphic line bundle L we obtain:

Lemma 4.12. The connection ∇σ and the complex structure Sσ depend holomorphically
on σ ∈ Σ∇ in the sense that

(4.12) (Sσ)′ = (Sσ )̇Sσ and (∇σ)′ = (∇σ )̇Sσ,

where ˙ and ′ denote the derivatives with respect to the t– and s–coordinates for x = t+ is
a local holomorphic chart on U ⊂ ΣΣ.

The holomorphic family Sσ of complex structures on W defined for σ ∈ Σ∇ can be
interpreted as a family of holomorphic maps Sp : Σ∇ → PC(Wp) ∼= CP1 parametrized over
the torus T 2 . For this we identify

PC(Wp) ∼= {Sp ∈ End(Wp) | S
2
p = − Id}

by identifying the complex line vC in Wp with the quaternionic endomorphism Sp whose
i–eigenspace is vC.

Theorem 4.13. Let (W,D) be a quaternionic holomorphic line bundle of degree zero over
a torus with spectral curve Σ. For every p ∈ T 2, the evaluation Sσp at p of the complex
structure defined in (4.9) for all σ ∈ Σ∇ uniquely extends to a holomorphic map

(4.13) Sp : Σ → PC(Wp) ∼= CP1.

If Σ∇ = Σ, this T 2–family of holomorphic maps glues to a C∞–map

S : Σ × T 2 → CP1.

Proof. Since Σ∇ is non–empty the evaluation at p ∈ T 2 of a non–trivial local holomorphic
section ψσ of L does not vanish identically. Thus we can holomorphically extend σ 7→ ψσpC

across the isolated zeros of σ 7→ ψσp . This shows that for p ∈ T 2 fixed, Sp can be
holomorphically extended from Σ∇ to Σ.
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Recall that L̃ is a holomorphic subbundle of Γ(W ) in the C∞–topology by Lemma 2.4. We
chose a trivial connection on W to identify PC(Wp) ∼= CP1 for all p ∈ T 2. Then Σ∇ = Σ

implies that S : Σ × T 2 → CP1 is smooth. �

If Σ∇ 6= Σ, the map S is not necessarily continuous as a map depending on two variables:
bubbling phenomena might occur at the points (σ, p) ∈ Σ × T 2 for which a non–trivial
ψσ ∈ Lσ is a holomorphic section with monodromy of W with a zero at p ∈ T 2.

5. Spectral Curves of Finite Genus and the Willmore Functional

We now come to the case where the spectral curve Σ of a quaternionic holomorphic line
bundle of degree zero over a torus has finite genus and thus can be compactified by adding
two points {o,∞}. Theorem 5.4 then will show that the T 2–family (4.13) of holomorphic
maps Sp : Σ → CP1 extends to a family of algebraic functions

Sp : Σ ∪ {o,∞} → CP1

on the compactification of Σ. Moreover, the T 2–family of complex holomorphic line bun-
dles corresponding to Sp for p ∈ T 2 move linearly in the Jacobian of the compactified
spectral curve.

Important examples of conformal immersions f : T 2 → S4 with degree zero normal bundle
for which the induced quaternionic holomorphic line bundle W = V/L has finite spectral
genus are constrained Willmore tori with trivial normal bundle, see [2].

5.1. Asymptotics of finite genus spectral curves. We say that a quaternionic holo-
morphic line bundle W of degree zero over a torus has finite spectral genus if its spectral
curve is of finite genus.

In general, the two planes in the Σ∞–part of the decomposition Σ = Σcpt ∪ Σ∞ of
Theorem 4.1 are joined by an infinite number of handles accumulating at the end. In the
finite genus case there is a compact set outside of which there are no handles. A spectral
curve Σ of finite genus can thus be compactified by adding two points {o,∞} at infinity.
The real structure ρ : Σ → Σ extends to the compactification Σ∪{o,∞} and interchanges
o and ∞.

The compact component Σcpt in the decomposition Σ = Σcpt ∪ Σ∞ of a finite genus
spectral curve can be chosen large enough such that there are no handles joining the
two planes in Σ∞. Depending on whether Σcpt has one or two connected components, the
compactification Σ ∪ {o,∞} is connected or consists of two connected Riemann surfaces of
genus at least one by Corollary 5.2 below. Since the Σ∞–component contains no handles,
it is the disconnected sum of two punctured discs, the neighborhoods of the added points
∞ and o, which in the logarithmic picture are graphs over the a– or b–planes, respectively.
More precisely:

Lemma 5.1. Let W be a quaternionic holomorphic line bundle of degree zero over a torus
T 2 ∼= C/Γ with spectral curve Σ of finite genus. Then there is a punctured neighborhood Uo
of one of the points at infinity, in the following called o, parameterized by the punctured
disc {x ∈ C∗ | |x| < r} for some r > 0 such that the restriction of the normalization map
h : Σ → Spec(W,D) ⊂ Hom(Γ,C∗) to Uo is of the form

hxγ = exp((b̄0 + a(x))γ + (b0 + 1/x)γ̄), γ ∈ Γ,
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where b0 ∈ C and x 7→ a(x) is a holomorphic function with a(0) = 0. Similarly, the other
point at infinity, in the following called ∞, has a punctured neighborhood U∞ parameterized
by {x ∈ C∗ | |x| < r} such that the restriction of h to U∞ is

hxγ = exp((b̄0 + 1/x)γ + (b0 + b(x))γ̄), γ ∈ Γ,

where b0 ∈ C and x 7→ b(x) is a holomorphic function with b(0) = 0.

The open sets Uo and U∞ can be chosen small enough such that the sections σ̃ 7→ ψσ̃ of L̃
constructed in Lemmas 4.3 and 4.6 and Remarks 4.4 and 4.7 are defined on the respective
preimages Ũo, Ũ∞ ⊂ Σ̃ of Uo and U∞. By setting

ψo = (0, 1) and ψ∞ = (1, 0)

(in the trivialization of W used in Sections 3 and 4), these sections σ̃ 7→ ψσ̃ can be

extended through the punctures of Ũo and Ũ∞ such that

ψ : (Ũo ∪ {o}) × T 2 → C2 and ψ : (Ũ∞ ∪ {∞}) × T 2 → C2

are C∞ as maps depending on two variables and holomorphic in the first variable.

The main reason for carrying out the asymptotic analysis of Sections 3 and 4 within
the l1–framework (instead of the usual L2–setting) is that l1–convergence implies C0–
convergence. This is essential for the proof of Lemma 5.1.

Proof. It is sufficient to prove the statement for Uo since the real structure ρ exchanges
Uo and U∞ and ψρ(σ̃) := −ψσ̃j. In the finite genus case Lemmas 4.3 and 4.6 imply that,
for small enough δ > 0 and ǫ > 0, we can chose R > 0 big enough such that

1.) the intersection of S̃ with {|a| < ǫ} × (
⋃
c∈Γ′;|c|>R(∆ǫ/2 + 2c)) is a graph of a function

b 7→ a(b) over
⋃
c∈Γ′;|c|>R(∆ǫ/2 + 2c),

2.) for every c0 ∈ Γ′ that satisfies |c0| > 2R, the intersection of S̃ with the polydisc
{(a, b) ∈ C2 | |a| < ǫ and |b− c0| < ǫ} consists of a pair of discs which are graphs over
the coordinate planes and have a double point, and

3.) the section σ̃ 7→ ψσ̃ of L̃ defined by Lemmas 4.3 and 4.6 over the preimage under the

projection Σ̃ → S̃ of the part of S̃ which is a graph of a function b 7→ a(b) with |a| < ǫ
over

⋃
c∈Γ′;|c|>R(B′ + 2c) satisfies

(5.1) ‖ψσ̃ − ψ∞‖ < δ,

where B′ = {(a, b) ∈ B | b = λ1c1 + λ2c2 with |λi| ≤ 1}.

Denote by Ũo an open subset of Σ̃ contained in the domain of definition of σ̃ 7→ ψσ̃ such

that the image of Ũo under the projection Σ̃ → S̃ is a graph over {b ∈ C | |b| > 1/r}

for some r > 0. Let Uo be the image of Ũo under the projection Σ̃ → Σ = Σ̃/Γ∗.
By construction, this set Uo is a punctured neighborhood of o with the property that
the restriction of the normalization map h : Σ → Spec(W,D) to Uo has a single valued
logarithm whose image, in the (a, b)–coordinates (3.1), is contained in the ǫ–tube around
the b–plane and is the graph of a holomorphic function b 7→ a(b) which is bounded by
ǫ and defined on {b ∈ C | |b| > 1/r}. Setting x = 1/b we obtain a parametrization of
Uo by x ∈ {x ∈ C∗ | |x| < r}. Riemann’s removable singularity theorem implies that
the bounded holomorphic function x 7→ a(x) extends to x = 0. Because ǫ > 0 can be
chosen arbitrarily small, this extension vanishes for x = 0. Using (3.1) this proves that
the normalization map h is of the given form when expressed in the x–coordinate on Uo .
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Similarly, the section σ̃ 7→ ψσ̃ defined on Ũo ⊂ Σ̃, when seen as a holomorphic map
from Ũo to C0(T 2,C2), is bounded by (5.1) and Riemann’s removable singularity theorem
implies that it has a unique holomorphic extension to o. This extension maps o to the
constant element ψo = (0, 1) ∈ C0(T 2,C2), because δ > 0 can be chosen arbitrarily small.

Since by Lemma 2.4 the line bundle L̃ is a holomorphic line subbundle of C∞(T 2,C2)
in the C∞–topology, for every m ≥ 0 the holomorphic section σ̃ 7→ ψσ̃ can be seen as a
holomorphic map from Ũo to Cm(T 2,C2) and has a Laurent series

ψσ̃(x) =
∞∑

k=−∞

ψmk x
k

in Cm(T 2,C2). Because in C0(T 2,C2) the section σ̃ 7→ ψσ̃ has a holomorphic extension
through the puncture, the Laurent series for m = 0 is a power series and the coefficients
of all negative exponents vanish. Since the embedding Cm(T 2,C2) → C0(T 2,C2) is con-
tinuous, the uniqueness of Laurent series implies that the same is true for all m. Thus,
for every m ≥ 0 the section σ̃ 7→ ψσ̃ extends to a holomorphic map from Ũo ∪ {o} to

Cm(T 2,C2) and hence ψ : (Ũo ∪ {o}) × T 2 → C2 is C∞ and holomorphic in the first
variable. �

Corollary 5.2. Let Σ be the spectral curve of a quaternionic holomorphic line bundle
(W,D = ∂̄+Q) of degree zero over a torus. Assume Σ is disconnected and hence the
(disconnected) direct sum of two compact Riemann surfaces with a single puncture which
are interchanged under the anti–holomorphic involution ρ. Then, except in the vacuum
case when Q ≡ 0, both summands have genus g ≥ 1.

It can be shown [2] that the following classes of constrained Willmore tori in S4 have
irreducible spectral curves: Willmore tori in S3 which are not Möbius equivalent to mini-
mal tori in R3, minimal tori in the standard 4–sphere or hyperbolic 4–space that are not
super–minimal, CMC tori in R3 and S3.

Proof. By Theorem 4.1 we only have to show that the two components have genus g ≥ 1.
Lemma 5.1 shows that, for each of the components one of the projections which, in the
(a, b)–coordinates of (3.1), are given by (a, b) 7→ a and (a, b) 7→ b extends to a non–trivial
holomorphic map from the compactification of the component onto the torus C/Γ̄′ or
C/Γ′. But by the Riemann–Hurwitz formula a compact surface admitting a non–trivial
holomorphic map onto a torus has genus g ≥ 1. �

Using the identification of the Lie algebra Hom(Γ,C) with Harm(T 2,C) (see Section 1),
the logarithmic derivative dΣ(log(h)) ∈ Ω1

Σ(Harm(T 2,C)) of the normalization map h can
be written as

(5.2) dΣ(log(h)) = ω∞ dz + ωo dz̄

with z denoting the coordinate induced by the isomorphism T 2 ∼= C/Γ used in the defi-
nition of the (a, b)–coordinates (3.1). The holomorphic forms ω∞ and ωo are derivatives
ω∞ = da and ωo = db of the functions a and b which are, up to the Γ′–action (3.10), well
defined on Σ. The following corollary is an immediate consequence of Lemma 5.1.

Corollary 5.3. The form ω∞ is holomorphic on Σ ∪ {o} and has a second order pole
with no residue at ∞. The form ωo = ρ∗ω̄∞ is holomorphic on Σ∪{∞} and has a second
order pole with no residue at o.
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The extendibility through the ends of the holomorphic sections σ̃ 7→ ψσ̃ of L̃ established
in Lemma 5.1 immediately implies the extendibility of S : Σ∇ → Γ(End(W )) through o

and ∞. Recall that, on the universal cover of T 2, non–trivial elements of L̃σ̃ and Lσ
coincide up to scaling by a complex function if σ̃ ∈ Σ̃ is the preimage of σ ∈ Σ under the
projection Σ̃ → Σ = Σ̃/Γ∗. Thus S can also be defined using holomorphic sections of L̃.

Theorem 5.4. Let W be a quaternionic holomorphic line bundle of degree zero over a
torus with spectral curve Σ of finite genus. By setting

S∞ = J and So = −J,

the family (4.9) of complex structures Sσ ∈ Γ(End(W )) defined for σ ∈ Σ∇ is extended
holomorphically (in the C∞–topology) through the points o and ∞ to a map

σ ∈ Σ∇ ∪ {o,∞} 7→ Sσ ∈ Γ(End(W )).

In particular, the T 2–family (4.13) of holomorphic functions Sp : Σ → CP1 extends to a
family of algebraic functions

Sp : Σ ∪ {o,∞} → CP1, p ∈ T 2.

If Σ∇ = Σ, this T 2–family of algebraic functions glues to a C∞–map

S : (Σ ∪ {o,∞}) × T 2 → CP1.

In Section 5.3 it will be shown that the complex holomorphic line bundle belonging to Sp,

the pull–back of the tautological bundle over CP1 by Sp, depends linearly on p ∈ T 2 as a
map into the Picard group of the compactified spectral curve.

5.2. Asymptotics of ∇σ and the Willmore energy. We investigate the asymptotics
of the connections ∇σ defined in (4.9) when σ approaches the ends of Σ. Theorem 5.5
shows how the Willmore energy of a quaternionic holomorphic line bundle of finite spectral
genus is encoded in the asymptotics of h : Σ → Hom(Γ,C∗).

Because ρ interchanges o and ∞ but leaves ∇σ invariant it is sufficient to investigate ∇σ

in a punctured neighborhood of ∞. By Theorem 5.4 the sections Sσ ∈ Γ(End(W )) satisfy
Sσ(p) 6= −J(p) for all p ∈ T 2 provided σ is in a small enough punctured neighborhood
U∞ ⊂ Σ∇ of ∞. Applying stereographic projection from −J we write

(5.3) Sσ = (1 + Y σ)J(1 + Y σ)−1

with Y σ ∈ Γ(End−(W )). Because ∇σSσ = 0 the flat connection ∇σ can be expressed as

(5.4) ∇σ = (1 + Y σ) ◦ (∇̂ + ασ) ◦ (1 + Y σ)−1 .

Here ∇̂ denotes the unique flat quaternionic connection with ∂̄ = ∇̂′′ and ∇̂J = 0 with
unitary holonomy and ασ ∈ Ω1(End+(W )) is a ∇̂–closed 1–form. On the other hand,

because (∇σ)′′ = D = ∂̄+Q, the family ∇σ can be written as ∇σ = ∇̂ + Q + ησ with
ησ ∈ Γ(K End(W )) and hence

∇σ = ∇̂ +Q+ ησ = ∇̂ +
1

1 + |Y σ|2
(ασ + ∇̂Y σY σ − Y σασY σ
︸ ︷︷ ︸

End+

−∇̂Y σ + Y σασ − ασY σ
︸ ︷︷ ︸

End−

).

(5.5)
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Since Q+ ησ has End+–part of type K we obtain (ασ + ∇̂Y σY σ − Y σασY σ)′′ = 0 and

(5.6) QY σ =
1

1 + |Y σ|2
(−∇̂Y σY σ + Y σασY σ − ασY σY σ)′′

=
1

1 + |Y σ|2
(ασ − ασY σY σ)′′ = (ασ)′′.

The fact that the families ∇σ and Sσ are holomorphic in σ in the sense of (4.12) implies
that the families Y σ and ασ are also holomorphic and satisfy

(Y σ)′ = (Y σ )̇J and (ασ)′ = (ασ )̇J.

Without loss of generality we can assume that the punctured neighborhood U∞ ⊂ Σ∇

of ∞ is the parameter domain of a chart x with x(∞) = 0 (e.g. the chart defined in
Lemma 5.1). Then Y σ has a power series expansion (in the C∞–topology)

Y σ(x) =

∞∑

k=1

Ykx
k(5.7)

with Yk ∈ Γ(End−(W )) and (ασ)′′, by (5.6), has an expansion

(ασ(x))′′ =

∞∑

k=1

α′′
kx

k.

For every σ ∈ U∞ the form ασ ∈ Ω1(End+(W )) ∼= Ω1(C) is closed so it has a unique
decomposition ασ = ασharm +ασexact into a harmonic and an exact part. The multiplier hσ

is then given by hσ(γ) = ĥ(γ)e−
R

γ
ασ

harm, where ĥ denotes the holonomy of ∇̂ restricted

to the i–eigenline bundle Ŵ of J (cf. Section 3.2). Lemma 5.1 now implies that there is
a holomorphic function a on U∞ with a first order pole at ∞ and a holomorphic function
b on U∞ ∪ {∞} with b(∞) = 0 such that

(5.8) ασharm = −(a(σ) + 2b̄0) dz − b(σ) dz̄,

where z is the chart on T 2 ∼= C/Γ and b0 ∈ C satisfies ĥγ = e−b̄0γ+b0γ̄ .

Because both (ασ)′′ and (ασharm)′′ extended holomorphically through the point σ = ∞ with
(α∞)′′ = 0 and (α∞

harm)′′ = 0, the same is true for (ασexact)
′′ = (ασ − ασharm)′′. Moreover,

the Fourier expansions of the exact forms ασexact have no constant terms and the Fourier
coefficients of (ασexact)

′ and (ασexact)
′′ coincide up to multiplicative constants independent of

σ such that (ασexact)
′, like (ασexact)

′′, extends holomorphically through ∞ with (α∞
exact)

′ = 0.
Since the two latter components in the decomposition ασ = (ασharm)′ + (ασexact)

′ + (ασ)′′

extend holomorphically through σ = ∞ and (ασharm)′ = −(a(σ) + 2b̄0) dz has a first order
pole, we obtain that ασ has a Laurent series of the form

ασ(x) =

∞∑

k=−1

αkx
k(5.9)

with closed αk ∈ Ω1(T 2,C). The coefficient α−1 is a non–trivial holomorphic 1–form on
the torus. Plugging (5.7) and (5.9) into (5.5) and taking the K̄ End−(W )–part yields
Q = Y1α−1. By plugging this into (5.6) we obtain α′′

1 = Y1α−1Y1. Hence

(5.10) Resx=0

(∫

T 2

α ∧
∂α

∂x

)
dx =

∫

T 2

α−1 ∧ α1 − α1 ∧ α−1 =

= −2

∫

T 2

α′′
1 ∧ α−1 = −2

∫

T 2

Y1α−1Y1 ∧ α−1 = iW,



THE SPECTRAL CURVE OF A QUATERNIONIC HOLOMORPHIC LINE BUNDLE OVER T 2 33

where W is the Willmore energy of the bundle which is given by

W = 2

∫

T 2

Q ∧ ∗Q = 2

∫

T 2

Y1α−1 ∧ Y1 ∗ α−1.

Using again the identification of Section 1 between the Lie algebra of Hom(Γ,C∗) and

Harm(T 2,C), the formula hσ(γ) = ĥσ(γ)e−
R

γ
ασ

harm implies ασharm = − log(hσ) + β for
some β ∈ Harm(T 2,C) which, like log(h), is only well determined up to adding an element
of Γ∗, that is, a 2πiZ–periodic harmonic form. Because α in (5.10) can be replaced by
its harmonic part αharm, we have proven the following theorem due to Grinevich and
Schmidt, see (47), (52) in [9] or (44) in [23].

Theorem 5.5. Let (W,D) be a quaternionic holomorphic line bundle of degree zero over
a torus. In case (W,D) has finite spectral genus its Willmore energy is given by

W = iReso
(
Ω
(
log(h), dΣ log(h)

))
= −iRes∞

(
Ω
(
log(h), dΣ log(h)

))
.

Here Ω denotes the canonical symplectic form

Ω(β1, β2) :=

∫

T 2

β1 ∧ β2 , β1, β2 ∈ Harm(T 2,C) ,

on the Lie algebra Hom(Γ,C) ∼= Harm(T 2,C) of Hom(Γ,C∗) and log(h) denotes the loga-
rithm of h : Σ → Spec(W,D) ⊂ Hom(Γ,C∗) which is single valued in punctured neighbor-
hoods of o and ∞.

Theorem 13.17 in [10] is the analogue to Theorem 5.5 for the energy of harmonic tori
T 2 → S3 (instead of the Willmore energy of conformal tori f : T 2 → S4 with finite
spectral genus). To make the analogy more explicit we give a slight reformulation of
the theorem. For this we define the a skew symmetric product ( , )p on the space of
meromorphic 1–forms with single pole and no residue at p by

(ω1, ω2)p = Resp(ω1F2),

where F2 denotes a local primitive of ω2, i.e., a holomorphic function with dF2 = ω2.
Plugging (5.2) into the formula for the Willmore energy we obtain

(5.11) W = 4(ω∞, ωo)∞ V ol(C/Γ) = −4(ω∞, ωo)o V ol(C/Γ)

(recall that the forms ω∞ and ωo defined by (5.2) depend on the choice of a chart z on T 2

which defines an isomorphism T 2 ∼= C/Γ). For a positive basis γ1 and γ2 of the lattice Γ,

define θ = ω∞γ1 + ωoγ̄1 and θ̃ = ω∞γ2 + ωoγ̄2. Because γ1γ̄2 − γ̄1γ2 = −2i V ol(C/Γ) we
obtain

(5.12) W = 2i(θ, θ̃)∞ = −2i(θ, θ̃)o,

the direct analogue to the Energy formula given in [10].

As a direct application of (5.11) we show now that the Willmore energy determines the
“speed” at which the spectrum Spec(W,D) converges to the vacuum Spec(W, ∂̄) when h
goes to ∞: by Lemma 5.1, a punctured neighborhood of ∞ in Σ can be parametrized by
a parameter |x| > r for which

log(hx) = (b̄0 + 1/x) dz + (b0 + λx+O(x2)) dz̄.

In this coordinate we thus have ω∞ = da = −1/x2dx and ωo = db = (λ + O(x))dx such
that formula (5.11) implies

(5.13) W = −4λV ol(C/Γ).
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5.3. The linar flow. Let W be a quaternionic holomorphic line bundle of degree 0 over
a 2–torus T 2 with spectral curve Σ of finite genus. The kernel bundle L → Σ does not
extend to the compactified spectral curve Σ̄ = Σ ∪ {o,∞} since the monodromy hσ of
elements of Lσ has essential singularities at σ = o and ∞. However, evaluating sections
in Lσ at a point p ∈ T 2 gives rise to a complex holomorphic line bundle Ep → Σ, a
subbundle of the trivial bundle Σ × Wp, which extends to the compactification Σ̄. Its

extension Ep → Σ̄ is the pull back of the tautological bundle over CP1 under the algebraic

function Sp : Σ̄ → CP1 defined in Theorem 5.4. We now prove that the resulting T 2–family
of complex holomorphic line bundles Ep → Σ̄ moves linearly in the Jacobian of Σ̄ when
the point p ∈ T 2 moves linearly on the torus.

Theorem 5.6. Let W be a quaternionic holomorphic line bundle of degree 0 over a 2–
torus T 2 with spectral curve Σ of finite genus and let p0 ∈ T 2 be fixed. Then the map

T 2 → Jac(Σ̄) : p 7→ EpE
−1
p0

is a group homomorphism.

Remark 5.7. In the special case of a quaternionic holomorphic line bundle that corresponds
to a harmonic map f : T 2 → S2 from the 2–torus to the 2–sphere the above theorem is
shown in Chapter 7 of [10]. The holomorphic line bundles Ep in that case coincide with
the holonomy eigenline bundles of the holomorphic family of flat SL2(C)–connections
defined by the harmonic map f , cf. Section 6.3 of [8] and Section 6.4 of [2]. To prove the
result for general quaternionic holomorphic line bundles of degree 0 of finite spectral genus
(rather than bundles corresponding to harmonic maps), we apply similar arguments as in
Chapter 7 of [10]. In our situation the analog of the harmonic map family of flat SL2(C)–
connections is the family ∇σ of flat quaternionic connections introduced in Section 4.3.

Proof. Let V∞ = U∞ ∪ {∞} be a neighborhood of ∞ in Σ̄ with U∞ as in Section 5.2 and
denote by Vo = ρ(V∞) the corresponding neighborhood of o. We compute the change of
Ep in p ∈ T 2 by representing bundles in terms of Čech–cohomology classes with respect to

the open cover Σ, V∞ and Vo of Σ̄. Denote by ψ∞ a ∇̂–parallel section with monodromy of
the quaternionic line bundleW → T 2 with complex structure J that satisfies Jψ∞ = ψ∞i,
where as before ∇̂ denotes the unique flat connection with ∇̂′′ = ∂̄ and ∇̂J = 0 that has
unitary holonomy. The restriction of Ep to V∞ can then be holomorphically trivialized by
taking the evaluation at p ∈ T 2 of the section

ψσ∞ := (1 + Y σ)ψ∞

with Y σ as defined in (5.3). Similarly, the restriction of Ep to Vo can be trivialized by

taking the evaluation of ψσo := ψ
ρ(σ)
∞ j.

In order to trivialize the restriction of Ep to Σ, we fix p0 ∈ T 2 and a nowhere vanishing
holomorphic section of the restriction of Ep0 to Σ. Taking the parallel transport with

respect to ∇σ, we obtain a family ψσΣ of holomorphic sections of the pullback W̃ of
W → T 2 = C/Γ to the universal cover C of T 2 whose restriction ψσΣ(z) to z ∈ C is a
holomorphic section of Ep for p ∈ T 2 = C/Γ, the point represented by z.

The bundle Ep0 is represented by the Čech–cocycle f∞ : U∞ → C∗ and fo : Uo → C∗

given by ψσΣ(z0) = ψσ∞(p0)f
σ
∞ for every σ ∈ U∞ = V∞ ∩ Σ and ψσΣ(z0) = ψσo (p0)f

σ
o for

every σ ∈ Uo = Vo ∩ Σ, where z0 ∈ C denotes a point representing p0 ∈ T 2 = C/Γ.
Equation (5.4) implies that the bundle Ep is then represented by the Čech–cocycle σ 7→

fσ∞ exp(−
∫ z
z0
ασ) and σ 7→ fσo exp(−

∫ z
z0
αρ(σ)) defined on U∞ and Uo respectively for z ∈ C
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a point representing p ∈ T 2 = C/Γ. In Section 5.2 we have seen that the exact part of ασ

extends holomorphically through ∞. Hence Ep is represented by the equivalent cocycle

σ 7→ fσ∞ exp(a(σ)(z − z0)) and σ 7→ fσo exp(a(ρ(σ))(z − z0)) on U∞ and Uo respectively,
where a(σ) is the holomorphic function on U∞ defined in (5.8). Changing the point
p ∈ T 2 thus amounts to a linear change of the Čech–cohomology class representing Ep
which proves the theorem. �
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