2,126 research outputs found

    The X-ray and radio emission from SN 2002ap: The importance of Compton scattering

    Full text link
    The radio and X-ray observations of the Type Ic supernova SN 2002ap are modeled. We find that inverse Compton cooling by photospheric photons explains the observed steep radio spectrum, and also the X-ray flux observed by XMM. Thermal emission from the shock is insufficient to explain the X-ray flux. The radio emitting region expands with a velocity of, roughly, 70,000 km/s. From the ratio of X-ray to radio emission we find that the energy densities of magnetic fields and relativistic electrons are close to equipartion.Comment: 15 pages, 2 figures, ApJ accepte

    Monte-Carlo methods for NLTE spectral synthesis of supernovae

    Full text link
    We present JEKYLL, a new code for modelling of supernova (SN) spectra and lightcurves based on Monte-Carlo (MC) techniques for the radiative transfer. The code assumes spherical symmetry, homologous expansion and steady state for the matter, but is otherwise capable of solving the time-dependent radiative transfer problem in non-local-thermodynamic-equilibrium (NLTE). The method used was introduced in a series of papers by Lucy, but the full time-dependent NLTE capabilities of it have never been tested. Here, we have extended the method to include non-thermal excitation and ionization as well as charge-transfer and two-photon processes. Based on earlier work, the non-thermal rates are calculated by solving the Spencer-Fano equation. Using a method previously developed for the SUMO code, macroscopic mixing of the material is taken into account in a statistical sense. In addition, a statistical Markov-chain model is used to sample the emission frequency, and we introduce a method to control the sampling of the radiation field. Except for a description of JEKYLL, we provide comparisons with the ARTIS, SUMO and CMFGEN codes, which show good agreement in the calculated spectra as well as the state of the gas. In particular, the comparison with CMFGEN, which is similar in terms of physics but uses a different technique, shows that the Lucy method does indeed converge in the time-dependent NLTE case. Finally, as an example of the time-dependent NLTE capabilities of JEKYLL, we present a model of a Type IIb SN, taken from a set of models presented and discussed in detail in an accompanying paper. Based on this model we investigate the effects of NLTE, in particular those arising from non-thermal excitation and ionization, and find strong effects even on the bolometric lightcurve. This highlights the need for full NLTE calculations when simulating the spectra and lightcurves of SNe.Comment: Accepted for publication by Astronomy & Astrophysic

    Vibrational coherence in electron spin resonance in nanoscale oscillators

    Full text link
    We study a scheme for electrical detection, using electron spin resonance, of coherent vibrations in a molecular single electron level trapped near a conduction channel. Both equilibrium spin-currents and non-equilibrium spin- and charge currents are investigated. Inelastic side-band anti-resonances corresponding to the vibrational modes appear in the electron spin resonance spectrum.Comment: 4 pages, 3 figures: Published versio

    Astrophysics in 2006

    Get PDF
    The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the universe) and others of which there are always many, like meteors and molecules, black holes and binaries.Comment: 244 pages, no figure

    SN 1998bw at late phases

    Full text link
    We present observations of the peculiar supernova SN 1998bw, which was probably associated with GRB 980425. The photometric and spectroscopic evolution is monitored up to 500 days past explosion. We also present modeling based on spherically symmetric, massive progenitor models and very energetic explosions. The models allow line identification and clearly show the importance of mixing. From the late light curves we estimate that about 0.3-0.9 solar masses of ejected Nickel-56 is required to power the supernova.Comment: With 3 figures Accepted for ApJ Letter
    corecore