715 research outputs found

    A Mathematical Framework for Modelling the Metastatic Spread of Cancer

    Get PDF
    Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner—a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    Restricted spirometry and cardiometabolic comorbidities: Results from the international population based BOLD study

    Get PDF
    Background: Whether restricted spirometry, i.e. low Forced Vital Capacity (FVC), predicts chronic cardiometabolic disease is not definitely known. In this international population-based study, we assessed the relationship between restricted spirometry and cardiometabolic comorbidities. Methods: A total of 23,623 subjects (47.5% males, 19.0% current smokers, age: 55.1 ± 10.8 years) from five continents (33 sites in 29 countries) participating in the Burden of Obstructive Lung Disease (BOLD) study were included. Restricted spirometry was defined as post-bronchodilator FVC < 5th percentile of reference values. Self-reports of physician-diagnosed cardiovascular disease (CVD; heart disease or stroke), hypertension, and diabetes were obtained through questionnaires. Results: Overall 31.7% of participants had restricted spirometry. However, prevalence of restricted spirometry varied approximately ten-fold, and was lowest (8.5%) in Vancouver (Canada) and highest in Sri Lanka (81.3%). Crude odds ratios for the association with restricted spirometry were 1.60 (95% CI 1.37–1.86) for CVD, 1.53 (95% CI 1.40–1.66) for hypertension, and 1.98 (95% CI 1.71–2.29) for diabetes. After adjustment for age, sex, education, Body Mass Index (BMI) and smoking, the odds ratios were 1.54 (95% CI 1.33–1.79) for CVD, 1.50 (95% CI 1.39–1.63) for hypertension, and 1.86 (95% CI 1.59–2.17) for diabetes. Conclusion: In this population-based, international, multi-site study, restricted spirometry associates with cardiometabolic diseases. The magnitude of these associations appears unattenuated when cardiometabolic risk factors are taken into account

    Two sisters with lung emphysema

    Get PDF
    BACKGROUND: α1-antitrypsin is an antiprotease that is mainly produced in the liver; it plays a crucial role in the protection of lung parenchyma against the destructive effects of proteases. Mutations in the α1-antitrypsin gene can cause α1-antitrypsin deficiency. Individuals homozygous for the Z-genotype have drastically lowered serum α1-antitrypsine concentrations and often develop lung emphysema at an early age.CASE DESCRIPTION: A 38-year-old woman and her 43-year-old sister both developed lung emphysema at an early age; this could be attributed to severe α1-antitrypsin deficiency. The only treatment for this condition is α1-antitrypsin supplement therapy, but this therapy is not reimbursed by health insurance companies in the Netherlands.CONCLUSION: α1-antitrypsin deficiency is a relatively rare cause of lung emphysema and can be seen as an orphan phenotype of chronic obstructive pulmonary disease (COPD). We appeal for reconsideration of coverage of α1-antitrypsine supplement therapy by basic health insurance in the Netherlands, on the basis of a recent randomised placebo-controlled study in which the protective effect of this therapy on progressive emphysema was demonstrated by CT lung densitometry.</p

    Preliminary study on the assessment of visceral adipose tissue using dual-energy x-ray absorptiometry in chronic obstructive pulmonary disease

    Get PDF
    Background: Visceral adipose tissue (VAT) was shown to be increased in patients with chronic obstructive pulmonary disease (COPD) compared to control subjects with comparable body mass index (BMI). Our aim was to determine the relation of VAT by dual-energy x-ray absorptiometry (DEXA) in patients with COPD by disease severity, BMI, other indices of body composition and static lung volumes. Methods: 294 COPD patients admitted for rehabilitation were studied. Lung function, static lung volumes and body composition (i.e. BMI, waist circumference, fat-free mass, fat mass and fat distribution between android and gynoid fat mass) were assessed before entering pulmonary rehabilitation. VAT was estimated within the android region by using DEXA. Patients were stratified for gender, BMI (cut-off of 25 kg/m2) and GOLD stage. To assess the impact of VAT on lung volumes, patients were also stratified for VAT less and above 50th percentile. Results: Both male and female patients with more severe airflow limitation had significantly lower VAT values, but these differences disappeared after stratification for BMI. VAT was significantly and strongly correlated with other body composition parameters (all p < 0.001). Patients with moderate to severe airflow limitation and lower VAT had increased static lung hyperinflation and lower diffusing capacity for carbon monoxide. Nevertheless, multivariate stepwise regression models including for BMI, age, gender and forced expiratory volume in 1 s (FEV1) as confounders did not confirm an independent role for VAT on static lung hyperinflation and diffusion capacity. Conclusion: After stratification for BMI, VAT is comparable in moderate to very severe COPD patients. Furthermore, BMI and demographics, but not VAT, were independent predictors of static lung hyperinflation and diffusing capacity in COPD

    The host immune response contributes to Haemophilus influenzae virulence

    Get PDF
    SummaryBackgroundThere is compelling evidence that infections with non-typeable Haemophilus influenzae (NTHi) are associated with exacerbations in COPD patients. However, NTHi has also been isolated frequently during clinically stable disease. In this study we tested the hypothesis that genetically distinct NTHi isolates obtained from COPD patients differ in virulence which could account for dissimilarities in the final outcome of an infection (stable vs. exacerbation).ResultsNTHi isolates (n = 32) were obtained from stable COPD patients, or during exacerbations. Genetically divergent NTHi isolates were selected and induction of inflammation was assessed as an indicator of virulence using different in vitro models. Despite marked genomic differences among NTHi isolates, in vitro studies could not distinguish between NTHi isolates based on their inflammatory capacities. Alternatively, when using a whole blood assay results demonstrated marked inter-, but not intra-individual differences in cytokine release between healthy volunteers irrespective of the origin of the NTHi isolate used.ConclusionResults suggest that the individual immune reactivity might be an important predictor for the clinical outcome (exacerbation vs. no exacerbation) following NTHi infection

    Change in cervical length after arrested preterm labor and the risk of preterm birth

    Get PDF
    ACKNOWLEDGMENTS B.W.J.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds stock options for ObsEva. B.W.J.M. has received research funding from Guerbet and Merck.Peer reviewedPublisher PD

    Presence of tobramycin in blood and urine during selective decontamination of the digestive tract in critically ill patients, a prospective cohort study

    Get PDF
    Tobramycin is one of the components used for selective decontamination of the digestive tract (SDD), applied to prevent colonization and subsequent infections in critically ill patients. Tobramycin is administered in the oropharynx and gastrointestinal tract and is normally not absorbed. However, critical illness may convey gut barrier failure. The aim of the study was to assess the prevalence and amount of tobramycin leakage from the gut into the blood, to quantify tobramycin excretion in urine, and to determine the association of tobramycin leakage with markers of circulation, kidney function and other organ failure. This was a prospective observational cohort study. The setting was the 20-bed closed format-mixed ICU of a teaching hospital. The study population was critically ill patients with an expected stay of more than two days, receiving SDD with tobramycin, polymyxin-E and amphotericin-B four times daily in the oropharynx and stomach. Tobramycin concentration was measured in serum (sensitive high performance liquid chromatography - mass spectrometry/mass spectrometry (HLPC-MS/MS) assay) and 24-hour urine (conventional immunoassay), in 34 patients, 24 hours after ICU admission, and in 71 patients, once daily for 7 days. Tobramycin leakage was defined as tobramycin detected in serum at least once (> 0.05 mg/L). Ototoxicity was not monitored. Of the 100 patients with available blood samples, 83 had tobramycin leakage. Median highest serum concentration for each patient was 0.12 mg/L; 99% of the patients had at least one positive urinary sample (> 0.5 mg/L), 49% had a urinary concentration ≥ 1 mg/L. The highest tobramycin serum concentration was significantly associated with vasopressor support, renal and hepatic dysfunction, and C-reactive protein. At binary logistic regression analysis, high dopamine dose and low urinary output on Day 1 were the significant predictors of tobramycin leakage. Nephrotoxicity could not be shown. The majority of acute critically ill patients treated with enteral tobramycin as a component of SDD had traces of tobramycin in the blood, especially those with severe shock, inflammation and subsequent acute kidney injury, suggesting loss of gut barrier and decreased renal removal. Unexpectedly, urinary tobramycin was above the therapeutic trough level in half of the patients. Nephrotoxicity could not be demonstrated
    corecore