248 research outputs found

    Quantum relays and noise suppression using linear optics

    Full text link
    Probabilistic quantum non-demolition (QND) measurements can be performed using linear optics and post-selection. Here we show how QND devices of this kind can be used in a straightforward way to implement a quantum relay, which is capable of extending the range of a quantum cryptography system by suppressing the effects of detector noise. Unlike a quantum repeater, a quantum relay system does not require entanglement purification or the ability to store photons.Comment: minor changes; references adde

    Non-realism : deep thought or a soft option ?

    Full text link
    The claim that the observation of a violation of a Bell inequality leads to an alleged alternative between nonlocality and non-realism is annoying because of the vagueness of the second term.Comment: 5 page

    Bounds on the Probability of Success of Postselected Non-linear Sign Shifts Implemented with Linear Optics

    Full text link
    The fundamental gates of linear optics quantum computation are realized by using single photons sources, linear optics and photon counters. Success of these gates is conditioned on the pattern of photons detected without using feedback. Here it is shown that the maximum probability of success of these gates is typically strictly less than 1. For the one-mode non-linear sign shift, the probability of success is bounded by 1/2. For the conditional sign shift of two modes, this probability is bounded by 3/4. These bounds are still substantially larger than the highest probabilities shown to be achievable so far, which are 1/4 and 2/27, respectively.Comment: 6 page

    All-Optical Switching Demonstration using Two-Photon Absorption and the Classical Zeno Effect

    Full text link
    Low-contrast all-optical Zeno switching has been demonstrated in a silicon nitride microdisk resonator coupled to a hot atomic vapor. The device is based on the suppression of the field build-up within a microcavity due to non-degenerate two-photon absorption. This experiment used one beam in a resonator and one in free-space due to limitations related to device physics. These results suggest that a similar scheme with both beams resonant in the cavity would correspond to input power levels near 20 nW.Comment: 4 pages, 5 figure

    Interference in dielectrics and pseudo-measurements

    Get PDF
    Inserting a lossy dielectric into one arm of an interference experiment acts in many ways like a measurement. If two entangled photons are passed through the interferometer, a certain amount of information is gained about which path they took, and the interference pattern in a coincidence count measurement is suppressed. However, by inserting a second dielectric into the other arm of the interferometer, one can restore the interference pattern. Two of these pseudo-measurements can thus cancel each other out. This is somewhat analogous to the proposed quantum eraser experiments.Comment: 7 pages RevTeX 3.0 + 2 figures (postscript). Submitted to Phys. Rev.

    Full Quantum Analysis of Two-Photon Absorption Using Two-Photon Wavefunction: Comparison with One-Photon Absorption

    Full text link
    For dissipation-free photon-photon interaction at the single photon level, we analyze one-photon transition and two-photon transition induced by photon pairs in three-level atoms using two-photon wavefunctions. We show that the two-photon absorption can be substantially enhanced by adjusting the time correlation of photon pairs. We study two typical cases: Gaussian wavefunction and rectangular wavefunction. In the latter, we find that under special conditions one-photon transition is completely suppressed while the high probability of two-photon transition is maintained.Comment: 6 pages, 4 figure

    Clock synchronization with dispersion cancellation

    Get PDF
    The dispersion cancellation feature of pulses which are entangled in frequency is employed to synchronize clocks of distant parties. The proposed protocol is insensitive to the pulse distortion caused by transit through a dispersive medium. Since there is cancellation to all orders, also the effects of slowly fluctuating dispersive media are compensated. The experimental setup can be realized with currently available technology, at least for a proof of principle.Comment: 4 pages, 3 figure

    An Algebraic Approach to Linear-Optical Schemes for Deterministic Quantum Computing

    Full text link
    Linear-Optical Passive (LOP) devices and photon counters are sufficient to implement universal quantum computation with single photons, and particular schemes have already been proposed. In this paper we discuss the link between the algebraic structure of LOP transformations and quantum computing. We first show how to decompose the Fock space of N optical modes in finite-dimensional subspaces that are suitable for encoding strings of qubits and invariant under LOP transformations (these subspaces are related to the spaces of irreducible unitary representations of U(N)). Next we show how to design in algorithmic fashion LOP circuits which implement any quantum circuit deterministically. We also present some simple examples, such as the circuits implementing a CNOT gate and a Bell-State Generator/Analyzer.Comment: new version with minor modification

    Entanglement from longitudinal and scalar photons

    Full text link
    The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.Comment: 12 pages, 1 figur

    Simple criteria for projective measurements with linear optics

    Full text link
    We derive a set of criteria to decide whether a given projection measurement can be, in principle, exactly implemented solely by means of linear optics. The derivation can be adapted to various detection methods, including photon counting and homodyne detection. These criteria enable one to obtain easily No-Go theorems for the exact distinguishability of orthogonal quantum states with linear optics including the use of auxiliary photons and conditional dynamics.Comment: final published versio
    corecore