563 research outputs found
Cyclical Quantum Memory for Photonic Qubits
We have performed a proof-of-principle experiment in which qubits encoded in
the polarization states of single-photons from a parametric down-conversion
source were coherently stored and read-out from a quantum memory device. The
memory device utilized a simple free-space storage loop, providing a cyclical
read-out that could be synchronized with the cycle time of a quantum computer.
The coherence of the photonic qubits was maintained during switching operations
by using a high-speed polarizing Sagnac interferometer switch.Comment: 4 pages, 5 figure
Generation of Entanglement Outside of the Light Cone
The Feynman propagator has nonzero values outside of the forward light cone.
That does not allow messages to be transmitted faster than the speed of light,
but it is shown here that it does allow entanglement and mutual information to
be generated at space-like separated points. These effects can be interpreted
as being due to the propagation of virtual photons outside of the light cone or
as a transfer of pre-existing entanglement from the quantum vacuum. The
differences between these two interpretations are discussed.Comment: 25 pages, 7 figures. Additional references and figur
Experimental Demonstration of a Quantum Circuit using Linear Optics Gates
One of the main advantages of an optical approach to quantum computing is the
fact that optical fibers can be used to connect the logic and memory devices to
form useful circuits, in analogy with the wires of a conventional computer.
Here we describe an experimental demonstration of a simple quantum circuit of
that kind in which two probabilistic exclusive-OR (XOR) logic gates were
combined to calculate the parity of three input qubits.Comment: v2 is final PRA versio
Heralded Two-Photon Entanglement from Probabilistic Quantum Logic Operations on Multiple Parametric Down-Conversion Sources
An ideal controlled-NOT gate followed by projective measurements can be used
to identify specific Bell states of its two input qubits. When the input qubits
are each members of independent Bell states, these projective measurements can
be used to swap the post-selected entanglement onto the remaining two qubits.
Here we apply this strategy to produce heralded two-photon polarization
entanglement using Bell states that originate from independent parametric
down-conversion sources, and a particular probabilistic controlled-NOT gate
that is constructed from linear optical elements. The resulting implementation
is closely related to an earlier proposal by Sliwa and Banaszek
[quant-ph/0207117], and can be intuitively understood in terms of familiar
quantum information protocols. The possibility of producing a ``pseudo-demand''
source of two-photon entanglement by storing and releasing these heralded pairs
from independent cyclical quantum memory devices is also discussed.Comment: 5 pages, 4 figures; submitted to IEEE Journal of Selected Topics in
Quantum Electronics, special issue on "Quantum Internet Technologies
Investigation of a single-photon source based on quantum interference
We report on an experimental investigation of a single-photon source based on
a quantum interference effect first demonstrated by Koashi, Matsuoka, and
Hirano [Phys. Rev. A 53, 3621 (1996)]. For certain types of measurement-based
quantum information processing applications this technique may be useful as a
high rate, but random, source of single photons.Comment: Submitted to the New J. Phys. Focus Issue on "Measurement-based
quantum information processing
Hay Quality Sensory Evaluation Form - Cereal
Hay Quality Sensory Evaluation Form – Cerea
- …