32 research outputs found

    Dynamical Mass of the Young Brown Dwarf Companion PZ Tel B

    Full text link
    Dynamical masses of giant planets and brown dwarfs are critical tools for empirically validating substellar evolutionary models and their underlying assumptions. We present a measurement of the dynamical mass and an updated orbit of PZ Tel B, a young brown dwarf companion orbiting a late-G member of the β\beta Pic moving group. PZ Tel A exhibits an astrometric acceleration between Hipparcos and Gaia EDR3, which enables the direct determination of the companion's mass. We have also acquired new Keck/NIRC2 adaptive optics imaging of the system, which increases the total baseline of relative astrometry to 15 years. Our joint orbit fit yields a dynamical mass of 279+25MJup27^{+25}_{-9} \, M_{\mathrm{Jup}}, semi-major axis of 274+14au27^{+14}_{-4} \, \mathrm{au}, eccentricity of 0.520.10+0.080.52^{+0.08}_{-0.10}, and inclination of 91.730.32+0.3691.73^{+0.36}_{-0.32} {}^\circ. The companion's mass is consistent within 1.1σ1.1\sigma of predictions from four grids of hot-start evolutionary models. The joint orbit fit also indicates a more modest eccentricity of PZ Tel B than previous results. PZ Tel joins a small number of young (<200Myr{<}200 \, \mathrm{Myr}) systems with benchmark substellar companions that have dynamical masses and precise ages from moving group membership.Comment: 14 pages, 5 figures, accepted to A

    The McDonald Accelerating Stars Survey (MASS): White Dwarf Companions Accelerating the Sun-like Stars 12 Psc and HD 159062

    Get PDF
    We present the discovery of a white dwarf companion to the G1 V star 12 Psc found as part of a Keck adaptive optics imaging survey of long-term accelerating stars from the McDonald Observatory Planet Search Program. Twenty years of precise radial-velocity monitoring of 12 Psc with the Tull Spectrograph at the Harlan J. Smith telescope reveals a moderate radial acceleration (\approx10 m s1^{-1} yr 1^{-1}), which together with relative astrometry from Keck/NIRC2 and the astrometric acceleration between HipparcosHipparcos and GaiaGaia DR2 yields a dynamical mass of MBM_B = 0.6050.022+0.021^{+0.021}_{-0.022} MM_{\odot} for 12 Psc B, a semi-major axis of 404+2^{+2}_{-4} AU, and an eccentricity of 0.84±\pm0.08. We also report an updated orbit fit of the white dwarf companion to the metal-poor (but barium-rich) G9 V dwarf HD 159062 based on new radial velocity observations from the High-Resolution Spectrograph at the Hobby-Eberly Telescope and astrometry from Keck/NIRC2. A joint fit of the available relative astrometry, radial velocities, and tangential astrometric acceleration yields a dynamical mass of MBM_B = 0.6090.011+0.010^{+0.010}_{-0.011} MM_{\odot} for HD 159062 B, a semi-major axis of 607+5^{+5}_{-7} AU, and preference for circular orbits (ee<<0.42 at 95% confidence). 12 Psc B and HD 159062 B join a small list of resolved "Sirius-like" benchmark white dwarfs with precise dynamical mass measurements which serve as valuable tests of white dwarf mass-radius cooling models and probes of AGB wind accretion onto their main-sequence companions.Comment: Accepted to A

    The McDonald Accelerating Stars Survey (MASS): White Dwarf Companions Accelerating the Sun-like Stars 12 Psc and HD 159062

    Get PDF
    We present the discovery of a white dwarf companion to the G1 V star 12 Psc found as part of a Keck adaptive optics imaging survey of long-term accelerating stars from the McDonald Observatory Planet Search Program. Twenty years of precise radial-velocity monitoring of 12 Psc with the Tull Spectrograph at the Harlan J. Smith telescope reveals a moderate radial acceleration (≈10 m s⁻¹ yr ⁻¹), which together with relative astrometry from Keck/NIRC2 and the astrometric acceleration between Hipparcos and Gaia DR2 yields a dynamical mass of M_B = 0.605^(+0.021)_(−0.022) M ⊙ for 12 Psc B, a semimajor axis of 40⁺²₋₄ au, and an eccentricity of 0.84 ± 0.08. We also report an updated orbital fit of the white dwarf companion to the metal-poor (but barium-rich) G9 V dwarf HD 159062 based on new radial-velocity observations from the High-Resolution Spectrograph at the Hobby–Eberly Telescope and astrometry from Keck/NIRC2. A joint fit of the available relative astrometry, radial velocities, and tangential astrometric acceleration yields a dynamical mass of M_B = 0.609^(+0.010)_(−0.011) M⊙ for HD 159062 B, a semimajor axis of 60⁺⁵₋₇ au, and preference for circular orbits (e < 0.42 at 95% confidence). 12 Psc B and HD 159062 B join a small list of resolved Sirius-like benchmark white dwarfs with precise dynamical mass measurements which serve as valuable tests of white dwarf mass–radius cooling models and probes of AGB wind accretion onto their main-sequence companions

    ELemental abundances of Planets and brown dwarfs Imaged around Stars (ELPIS): I. Potential Metal Enrichment of the Exoplanet AF Lep b and a Novel Retrieval Approach for Cloudy Self-luminous Atmospheres

    Full text link
    AF Lep A+b is a remarkable planetary system hosting a gas-giant planet that has the lowest dynamical mass among directly imaged exoplanets. We present an in-depth analysis of the atmospheric composition of the star and planet to probe the planet's formation pathway. Based on new high-resolution spectroscopy of AF Lep A, we measure a uniform set of stellar parameters and elemental abundances (e.g., [Fe/H] = 0.27±0.31-0.27 \pm 0.31 dex). The planet's dynamical mass (2.80.5+0.62.8^{+0.6}_{-0.5} MJup_{\rm Jup}) and orbit are also refined using published radial velocities, relative astrometry, and absolute astrometry. We use petitRADTRANS to perform chemically-consistent atmospheric retrievals for AF Lep b. The radiative-convective equilibrium temperature profiles are incorporated as parameterized priors on the planet's thermal structure, leading to a robust characterization for cloudy self-luminous atmospheres. This novel approach is enabled by constraining the temperature-pressure profiles via the temperature gradient (dlnT/dlnP)(d\ln{T}/d\ln{P}), a departure from previous studies that solely modeled the temperature. Through multiple retrievals performed on different portions of the 0.94.20.9-4.2 μ\mum spectrophotometry, along with different priors on the planet's mass and radius, we infer that AF Lep b likely possesses a metal-enriched atmosphere ([Fe/H] >1.0> 1.0 dex). AF Lep b's potential metal enrichment may be due to planetesimal accretion, giant impacts, and/or core erosion. The first process coincides with the debris disk in the system, which could be dynamically excited by AF Lep b and lead to planetesimal bombardment. Our analysis also determines Teff800T_{\rm eff} \approx 800 K, log(g)3.7\log{(g)} \approx 3.7 dex, and the presence of silicate clouds and dis-equilibrium chemistry in the atmosphere. Straddling the L/T transition, AF Lep b is thus far the coldest exoplanet with suggested evidence of silicate clouds.Comment: AJ, in press. Main text: Pages 1-32, Figures 1-15, Tables 1-6. All figures and tables after References belong to the Appendix (Pages 32-58, Figures 16-20, Table 7). For supplementary materials, please refer to the Zenodo repository https://doi.org/10.5281/zenodo.826746

    Rotation Periods, Inclinations, and Obliquities of Cool Stars Hosting Directly Imaged Substellar Companions: Spin-Orbit Misalignments are Common

    Full text link
    The orientation between a star's spin axis and a planet's orbital plane provides valuable information about the system's formation and dynamical history. For non-transiting planets at wide separations, true stellar obliquities are challenging to measure, but lower limits on spin-orbit orientations can be determined from the difference between the inclination of the star's rotational axis and the companion's orbital plane (Δi\Delta i). We present results of a uniform analysis of rotation periods, stellar inclinations, and obliquities of cool stars (SpT \gtrsim F5) hosting directly imaged planets and brown dwarf companions. As part of this effort, we have acquired new vsiniv \sin i_* values for 22 host stars with the high-resolution Tull spectrograph at the Harlan J. Smith telescope. Altogether our sample contains 62 host stars with rotation periods, most of which are newly measured using light curves from the Transiting Exoplanet Survey Satellite. Among these, 53 stars have inclinations determined from projected rotational and equatorial velocities, and 21 stars predominantly hosting brown dwarfs have constraints on Δi\Delta i. Eleven of these (5211+10^{+10}_{-11}% of the sample) are likely misaligned, while the remaining ten host stars are consistent with spin-orbit alignment. As an ensemble, the minimum obliquity distribution between 10-250 AU is more consistent with a mixture of isotropic and aligned systems than either extreme scenario alone--pointing to direct cloud collapse, formation within disks bearing primordial alignments and misalignments, or architectures processed by dynamical evolution. This contrasts with stars hosting directly imaged planets, which show a preference for low obliquities. These results reinforce an emerging distinction between the orbits of long-period brown dwarfs and giant planets in terms of their stellar obliquities and orbital eccentricities.Comment: AJ, accepte

    The McDonald Accelerating Stars Survey (MASS):Discovery of a Long-Period Substellar Companion Orbiting the Old Solar Analog HD 47127

    Get PDF
    Brown dwarfs with well-determined ages, luminosities, and masses provide rare but valuable tests of low-temperature atmospheric and evolutionary models. We present the discovery and dynamical mass measurement of a substellar companion to HD 47127, an old (\approx7-10 Gyr) G5 main sequence star with a mass similar to the Sun. Radial velocities of the host star with the Harlan J. Smith Telescope uncovered a low-amplitude acceleration of 1.93 ±\pm 0.08 m s1^{-1} yr1^{-1} based on 20 years of monitoring. We subsequently recovered a faint (ΔH\Delta H=13.14 ±\pm 0.15 mag) co-moving companion at 1.95'' (52 AU) with follow-up Keck/NIRC2 adaptive optics imaging. The radial acceleration of HD 47127 together with its tangential acceleration from Hipparcos and Gaia EDR3 astrometry provide a direct measurement of the three-dimensional acceleration vector of the host star, enabling a dynamical mass constraint for HD 47127 B (67.5-177 MJupM_\mathrm{Jup} at 95% confidence) despite the small fractional orbital coverage of the observations. The absolute HH-band magnitude of HD 47127 B is fainter than the benchmark T dwarfs HD 19467 B and Gl 229 B but brighter than Gl 758 B and HD 4113 C, suggesting a late-T spectral type. Altogether the mass limits for HD 47127 B from its dynamical mass and the substellar boundary imply a range of 67-78 MJupM_\mathrm{Jup} assuming it is single, although a preference for high masses of \approx100 MJupM_\mathrm{Jup} from dynamical constraints hints at the possibility that HD 47127 B could itself be a binary pair of brown dwarfs or that another massive companion resides closer in. Regardless, HD 47127 B will be an excellent target for more refined orbital and atmospheric characterization in the future.Comment: Accepted to ApJ Letter

    Surveying Nearby Brown Dwarfs with HGCA: Direct Imaging Discovery of a Faint, High-Mass Brown Dwarf Orbiting HD 176535 A

    Full text link
    Brown dwarfs with well-measured masses, ages and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos-Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately 3.591.15+0.873.59_{-1.15}^{+0.87} Gyrs at a distance of 36.99±0.0336.99 \pm 0.03 pc. In advance of our high-contrast imaging observations, we combined precision HARPS RVs and HGCA astrometry to predict the potential companion's location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the LL' band, which revealed a companion with a contrast of ΔLp=9.20±0.06\Delta L'_p = 9.20\pm0.06 mag at a projected separation of \approx0.\!\!''35 (\approx13 AU) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source MCMC orbit fitting code orvara\tt orvara. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of log(Lbol/L)=5.26±0.06\rm log(L_{bol}/L_{\odot}) = -5.26\pm0.06 and a model-dependent effective temperature of 980±35980 \pm 35 K for HD 176535 B. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/KPIC, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph

    Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population

    Get PDF
    In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today's trans-Neptunian object (TNO) populations. The cold classical TNOs are ultra-red, while the dynamically excited "hot" population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both with inclinations i >30 degrees, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 +/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans

    Trans-Neptunian objects found in the first four years of the Dark Energy Survey

    Get PDF
    We present a catalog of 316 trans-Neptunian bodies (TNOs) detected from the first four seasons ("Y4" data) of the Dark Energy Survey (DES). The survey covers a contiguous 5000 deg(2) of the southern sky in the grizY optical/NIR filter set, with a typical TNO in this part of the sky being targeted by 25-30 Y4 exposures. This paper focuses on the methods used to detect these objects from the 60,000 Y4 exposures, a process made challenging by the absence of the few-hour repeat observations employed by TNO-optimized surveys. Newly developed techniques include: transient/moving object detection by comparison of single-epoch catalogs to catalogs of "stacked" images; quantified astrometric error from atmospheric turbulence; new software for detecting TNO linkages in a temporally sparse transient catalog, and for estimating the rate of spurious linkages; use of faint stars to determine the detection efficiency versus magnitude in all exposures. Final validation of the reality of linked orbits uses a new "sub-threshold confirmation" test, wherein we demand the object be detectable in a stack of the exposures in which the orbit indicates an object should be present, but was not individually detected. This catalog contains all validated TNOs which were detected on >= 6 unique nights in the Y4 data, and is complete to r less than or similar to 23.3 mag with virtually no dependence on orbital properties for bound TNOs at distance 30 au d 0.3 mag more depth, and arcs of >4 yr for nearly all detections.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Astrometric accelerations as dynamical beacons : discovery and characterization of HIP 21152 B, the First T-dwarf companion in the Hyades * * Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

    Get PDF
    Benchmark brown dwarf companions with well-determined ages and model-independent masses are powerful tools to test substellar evolutionary models and probe the formation of giant planets and brown dwarfs. Here, we report the independent discovery of HIP 21152 B, the first imaged brown dwarf companion in the Hyades, and conduct a comprehensive orbital and atmospheric characterization of the system. HIP 21152 was targeted in an ongoing high-contrast imaging campaign of stars exhibiting proper-motion changes between Hipparcos and Gaia, and was also recently identified by Bonavita et al. (2022) and Kuzuhara et al. (2022). Our Keck/NIRC2 and SCExAO/CHARIS imaging of HIP 21152 revealed a comoving companion at a separation of 0.″37 (16 au). We perform a joint orbit fit of all available relative astrometry and radial velocities together with the Hipparcos-Gaia proper motions, yielding a dynamical mass of 24−4+6MJup , which is 1–2σ lower than evolutionary model predictions. Hybrid grids that include the evolution of cloud properties best reproduce the dynamical mass. We also identify a comoving wide-separation (1837″ or 7.9 × 104 au) early-L dwarf with an inferred mass near the hydrogen-burning limit. Finally, we analyze the spectra and photometry of HIP 21152 B using the Saumon & Marley (2008) atmospheric models and a suite of retrievals. The best-fit grid-based models have f sed = 2, indicating the presence of clouds, T eff = 1400 K, and logg=4.5dex . These results are consistent with the object’s spectral type of T0 ± 1. As the first benchmark brown dwarf companion in the Hyades, HIP 21152 B joins the small but growing number of substellar companions with well-determined ages and dynamical masses
    corecore