282 research outputs found

    Structural relaxation in orthoterphenyl: a schematic mode coupling theory model analysis

    Full text link
    Depolarized light scattering spectra of orthoterphenyl showing the emergence of the structural relaxation below the oscillatory microscopic excitations are described by solutions of a schematic mode--coupling--theory model

    Anomalous transport in the crowded world of biological cells

    Full text link
    A ubiquitous observation in cell biology is that diffusion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarising their densely packed and heterogeneous structures. The most familiar phenomenon is a power-law increase of the MSD, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations, non-gaussian distributions of the displacements, heterogeneous diffusion, and immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarise some widely used theoretical models: gaussian models like FBM and Langevin equations for visco-elastic media, the CTRW model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Emphasis is put on the spatio-temporal properties of the transport in terms of 2-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even for identical MSDs. Then, we review the theory underlying common experimental techniques in the presence of anomalous transport: single-particle tracking, FCS, and FRAP. We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where model systems mimic physiological crowding conditions. Finally, computer simulations play an important role in testing the theoretical models and corroborating the experimental findings. The review is completed by a synthesis of the theoretical and experimental progress identifying open questions for future investigation.Comment: review article, to appear in Rep. Prog. Phy

    Structure and structure relaxation

    Full text link
    A discrete--dynamics model, which is specified solely in terms of the system's equilibrium structure, is defined for the density correlators of a simple fluid. This model yields results for the evolution of glassy dynamics which are identical with the ones obtained from the mode-coupling theory for ideal liquid--glass transitions. The decay of density fluctuations outside the transient regime is shown to be given by a superposition of Debye processes. The concept of structural relaxation is given a precise meaning. It is proven that the long-time part of the mode-coupling-theory solutions is structural relaxation, while the transient motion merely determines an overall time scale for the glassy dynamics

    Driven lattice gas of dimers coupled to a bulk reservoir

    Get PDF
    We investigate the non-equilibrium steady state of a one-dimensional (1D) lattice gas of dimers. The dynamics is described by a totally asymmetric exclusion process (TASEP) supplemented by attachment and detachment processes, mimicking chemical equilibrium of the 1D driven transport with the bulk reservoir. The steady-state phase diagram, current and density profiles are calculated using both a refined mean-field theory and extensive stochastic simulations. As a consequence of the on-off kinetics, a new phase coexistence region arises intervening between low and high density phases such that the discontinuous transition line of the TASEP splits into two continuous ones. The results of the mean-field theory and simulations are found to coincide. We show that the physical picture obtained in the corresponding lattice gas model with monomers is robust, in the sense that the phase diagram changes quantitatively, but the topology remains unaltered. The mechanism for phase separation is identified as generic for a wide class of driven 1D lattice gases.Comment: 15 pages, 10 figures, 1tabl
    • …
    corecore