4,981 research outputs found

    The Individual and Collective Effects of Exact Exchange and Dispersion Interactions on the Ab Initio Structure of Liquid Water

    Full text link
    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local vdW/dispersion interactions, via a fully self-consistent density-dependent dispersion correction, and approximate nuclear quantum effects (aNQE), via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx, vdW, and aNQE as resulting from a large-scale AIMD simulation of (H2_2O)128_{128} at the PBE0+vdW level of theory, significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q)S_{\rm OO}(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r)g_{\rm OO}(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment as demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of the PBE0 hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions

    Expansive homeomorphisms of the plane

    Full text link
    This article tackles the problem of the classification of expansive homeomorphisms of the plane. Necessary and sufficient conditions for a homeomorphism to be conjugate to a linear hyperbolic automorphism will be presented. The techniques involve topological and metric aspects of the plane. The use of a Lyapunov metric function which defines the same topology as the one induced by the usual metric but that, in general, is not equivalent to it is an example of such techniques. The discovery of a hypothesis about the behavior of Lyapunov functions at infinity allows us to generalize some results that are valid in the compact context. Additional local properties allow us to obtain another classification theorem.Comment: 29 pages, 22 figure

    Histories of hating

    Get PDF
    This roundtable discussion presents a dialogue between digital culture scholars on the seemingly increased presence of hating and hate speech online. Revolving primarily around the recent #GamerGate campaign of intensely misogynistic discourse aimed at women in video games, the discussion suggests that the current moment for hate online needs to be situated historically. From the perspective of intersecting cultural histories of hate speech, discrimination, and networked communication, we interrogate the ontological specificity of online hating before going on to explore potential responses to the harmful consequences of hateful speech. Finally, a research agenda for furthering the historical understandings of contemporary online hating is suggested in order to address the urgent need for scholarly interventions into the exclusionary cultures of networked media

    Novel functional roles for \u3cem\u3ePERIANTHIA\u3c/em\u3e and \u3cem\u3eSEUSS\u3c/em\u3e during floral organ identity specification, floral meristem termination, and gynoecial development

    Get PDF
    The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for reproductive competence because it gives rise to the ovules, the precursors of the seeds. Here we report a functional role for the transcription factor PERIANTHIA (PAN) in the development of the gynoecial medial domain and the formation of ovule primordia. This function of PAN is revealed in pan aintegumenta (ant) as well as seuss (seu) pan double mutants that form reduced numbers of ovules. Previously, PAN was identified as a regulator of perianth organ number and as a direct activator of AGAMOUS (AG) expression in floral whorl four. However, the seu pan double mutants display enhanced ectopic AG expression in developing sepals and the partial transformation of sepals to petals indicating a novel role for PAN in the repression of AG in floral whorl one. These results indicate that PAN functions as an activator or repressor of AG expression in a whorl-specific fashion. The seu pan double mutants also display enhanced floral indeterminacy, resulting in the formation of fifth whorl structures and disruption of WUSCHEL (WUS) expression patterns revealing a novel role for SEU in floral meristem termination

    Novel functional roles for \u3cem\u3ePERIANTHIA\u3c/em\u3e and \u3cem\u3eSEUSS\u3c/em\u3e during floral organ identity specification, floral meristem termination, and gynoecial development

    Get PDF
    The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for reproductive competence because it gives rise to the ovules, the precursors of the seeds. Here we report a functional role for the transcription factor PERIANTHIA (PAN) in the development of the gynoecial medial domain and the formation of ovule primordia. This function of PAN is revealed in pan aintegumenta (ant) as well as seuss (seu) pan double mutants that form reduced numbers of ovules. Previously, PAN was identified as a regulator of perianth organ number and as a direct activator of AGAMOUS (AG) expression in floral whorl four. However, the seu pan double mutants display enhanced ectopic AG expression in developing sepals and the partial transformation of sepals to petals indicating a novel role for PAN in the repression of AG in floral whorl one. These results indicate that PAN functions as an activator or repressor of AG expression in a whorl-specific fashion. The seu pan double mutants also display enhanced floral indeterminacy, resulting in the formation of fifth whorl structures and disruption of WUSCHEL (WUS) expression patterns revealing a novel role for SEU in floral meristem termination
    corecore