4,981 research outputs found
The Individual and Collective Effects of Exact Exchange and Dispersion Interactions on the Ab Initio Structure of Liquid Water
In this work, we report the results of a series of density functional theory
(DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid
water using a hierarchy of exchange-correlation (XC) functionals to investigate
the individual and collective effects of exact exchange (Exx), via the PBE0
hybrid functional, non-local vdW/dispersion interactions, via a fully
self-consistent density-dependent dispersion correction, and approximate
nuclear quantum effects (aNQE), via a 30 K increase in the simulation
temperature, on the microscopic structure of liquid water. Based on these AIMD
simulations, we found that the collective inclusion of Exx, vdW, and aNQE as
resulting from a large-scale AIMD simulation of (HO) at the
PBE0+vdW level of theory, significantly softens the structure of ambient liquid
water and yields an oxygen-oxygen structure factor, , and
corresponding oxygen-oxygen radial distribution function, , that
are now in quantitative agreement with the best available experimental data.
This level of agreement between simulation and experiment as demonstrated
herein originates from an increase in the relative population of water
molecules in the interstitial region between the first and second coordination
shells, a collective reorganization in the liquid phase which is facilitated by
a weakening of the hydrogen bond strength by the use of the PBE0 hybrid XC
functional, coupled with a relative stabilization of the resultant disordered
liquid water configurations by the inclusion of non-local vdW/dispersion
interactions
Expansive homeomorphisms of the plane
This article tackles the problem of the classification of expansive
homeomorphisms of the plane. Necessary and sufficient conditions for a
homeomorphism to be conjugate to a linear hyperbolic automorphism will be
presented. The techniques involve topological and metric aspects of the plane.
The use of a Lyapunov metric function which defines the same topology as the
one induced by the usual metric but that, in general, is not equivalent to it
is an example of such techniques. The discovery of a hypothesis about the
behavior of Lyapunov functions at infinity allows us to generalize some results
that are valid in the compact context. Additional local properties allow us to
obtain another classification theorem.Comment: 29 pages, 22 figure
Histories of hating
This roundtable discussion presents a dialogue between digital culture scholars on the seemingly increased presence of hating and hate speech online. Revolving primarily around the recent #GamerGate campaign of intensely misogynistic discourse aimed at women in video games, the discussion suggests that the current moment for hate online needs to be situated historically. From the perspective of intersecting cultural histories of hate speech, discrimination, and networked communication, we interrogate the ontological specificity of online hating before going on to explore potential responses to the harmful consequences of hateful speech. Finally, a research agenda for furthering the historical understandings of contemporary online hating is suggested in order to address the urgent need for scholarly interventions into the exclusionary cultures of networked media
Novel functional roles for \u3cem\u3ePERIANTHIA\u3c/em\u3e and \u3cem\u3eSEUSS\u3c/em\u3e during floral organ identity specification, floral meristem termination, and gynoecial development
The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for reproductive competence because it gives rise to the ovules, the precursors of the seeds. Here we report a functional role for the transcription factor PERIANTHIA (PAN) in the development of the gynoecial medial domain and the formation of ovule primordia. This function of PAN is revealed in pan aintegumenta (ant) as well as seuss (seu) pan double mutants that form reduced numbers of ovules. Previously, PAN was identified as a regulator of perianth organ number and as a direct activator of AGAMOUS (AG) expression in floral whorl four. However, the seu pan double mutants display enhanced ectopic AG expression in developing sepals and the partial transformation of sepals to petals indicating a novel role for PAN in the repression of AG in floral whorl one. These results indicate that PAN functions as an activator or repressor of AG expression in a whorl-specific fashion. The seu pan double mutants also display enhanced floral indeterminacy, resulting in the formation of fifth whorl structures and disruption of WUSCHEL (WUS) expression patterns revealing a novel role for SEU in floral meristem termination
Novel functional roles for \u3cem\u3ePERIANTHIA\u3c/em\u3e and \u3cem\u3eSEUSS\u3c/em\u3e during floral organ identity specification, floral meristem termination, and gynoecial development
The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for reproductive competence because it gives rise to the ovules, the precursors of the seeds. Here we report a functional role for the transcription factor PERIANTHIA (PAN) in the development of the gynoecial medial domain and the formation of ovule primordia. This function of PAN is revealed in pan aintegumenta (ant) as well as seuss (seu) pan double mutants that form reduced numbers of ovules. Previously, PAN was identified as a regulator of perianth organ number and as a direct activator of AGAMOUS (AG) expression in floral whorl four. However, the seu pan double mutants display enhanced ectopic AG expression in developing sepals and the partial transformation of sepals to petals indicating a novel role for PAN in the repression of AG in floral whorl one. These results indicate that PAN functions as an activator or repressor of AG expression in a whorl-specific fashion. The seu pan double mutants also display enhanced floral indeterminacy, resulting in the formation of fifth whorl structures and disruption of WUSCHEL (WUS) expression patterns revealing a novel role for SEU in floral meristem termination
- …