5,228 research outputs found
Efficient algorithms for tensor scaling, quantum marginals and moment polytopes
We present a polynomial time algorithm to approximately scale tensors of any
format to arbitrary prescribed marginals (whenever possible). This unifies and
generalizes a sequence of past works on matrix, operator and tensor scaling.
Our algorithm provides an efficient weak membership oracle for the associated
moment polytopes, an important family of implicitly-defined convex polytopes
with exponentially many facets and a wide range of applications. These include
the entanglement polytopes from quantum information theory (in particular, we
obtain an efficient solution to the notorious one-body quantum marginal
problem) and the Kronecker polytopes from representation theory (which capture
the asymptotic support of Kronecker coefficients). Our algorithm can be applied
to succinct descriptions of the input tensor whenever the marginals can be
efficiently computed, as in the important case of matrix product states or
tensor-train decompositions, widely used in computational physics and numerical
mathematics.
We strengthen and generalize the alternating minimization approach of
previous papers by introducing the theory of highest weight vectors from
representation theory into the numerical optimization framework. We show that
highest weight vectors are natural potential functions for scaling algorithms
and prove new bounds on their evaluations to obtain polynomial-time
convergence. Our techniques are general and we believe that they will be
instrumental to obtain efficient algorithms for moment polytopes beyond the
ones consider here, and more broadly, for other optimization problems
possessing natural symmetries
Topological Entropy of Braids on the Torus
A fast method is presented for computing the topological entropy of braids on
the torus. This work is motivated by the need to analyze large braids when
studying two-dimensional flows via the braiding of a large number of particle
trajectories. Our approach is a generalization of Moussafir's technique for
braids on the sphere. Previous methods for computing topological entropies
include the Bestvina--Handel train-track algorithm and matrix representations
of the braid group. However, the Bestvina--Handel algorithm quickly becomes
computationally intractable for large braid words, and matrix methods give only
lower bounds, which are often poor for large braids. Our method is
computationally fast and appears to give exponential convergence towards the
exact entropy. As an illustration we apply our approach to the braiding of both
periodic and aperiodic trajectories in the sine flow. The efficiency of the
method allows us to explore how much extra information about flow entropy is
encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl
Strictly Toral Dynamics
This article deals with nonwandering (e.g. area-preserving) homeomorphisms of
the torus which are homotopic to the identity and strictly
toral, in the sense that they exhibit dynamical properties that are not present
in homeomorphisms of the annulus or the plane. This includes all homeomorphisms
which have a rotation set with nonempty interior. We define two types of
points: inessential and essential. The set of inessential points is
shown to be a disjoint union of periodic topological disks ("elliptic
islands"), while the set of essential points is an essential
continuum, with typically rich dynamics (the "chaotic region"). This
generalizes and improves a similar description by J\"ager. The key result is
boundedness of these "elliptic islands", which allows, among other things, to
obtain sharp (uniform) bounds of the diffusion rates. We also show that the
dynamics in is as rich as in from the rotational
viewpoint, and we obtain results relating the existence of large invariant
topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear
in Inv. Mat
Cooperative Origin of Low-Density Domains in Liquid Water
We study the size of clusters formed by water molecules possessing large
enough tetrahedrality with respect to their nearest neighbors. Using Monte
Carlo simulation of the SPC/E model of water, together with a geometric
analysis based on Voronoi tessellation, we find that regions of lower density
than the bulk are formed by accretion of molecules into clusters exceeding a
minimum size. Clusters are predominantly linear objects and become less compact
as they grow until they reach a size beyond which further accretion is not
accompanied by a density decrease. The results suggest that the formation of
"ice-like" regions in liquid water is cooperative.Comment: 16 pages, 6 figure
Aperiodic invariant continua for surface homeomorphisms
We prove that if a homeomorphism of a closed orientable surface S has no
wandering points and leaves invariant a compact, connected set K which contains
no periodic points, then either K=S and S is a torus, or is the
intersection of a decreasing sequence of annuli. A version for non-orientable
surfaces is given.Comment: 8 pages, to appear in Mathematische Zeitschrif
Thermodynamic behaviour and structural properties of an aqueous sodium chloride solution upon supercooling
We present the results of a molecular dynamics simulation study of
thermodynamic and structural properties upon supercooling of a low
concentration sodium chloride solution in TIP4P water and the comparison with
the corresponding bulk quantities. We study the isotherms and the isochores for
both the aqueous solution and bulk water. The comparison of the phase diagrams
shows that thermodynamic properties of the solution are not merely shifted with
respect to the bulk. Moreover, from the analysis of the thermodynamic curves,
both the spinodal line and the temperatures of maximum density curve can be
calculated. The spinodal line appears not to be influenced by the presence of
ions at the chosen concentration, while the temperatures of maximum density
curve displays both a mild shift in temperature and a shape modification with
respect to bulk. Signatures of the presence of a liquid-liquid critical point
are found in the aqueous solution. By analysing the water-ion radial
distribution functions of the aqueous solution we observe that upon changing
density, structural modifications appear close to the spinodal. For low
temperatures additional modifications appear also for densities close to that
corresponding to a low density configurational energy minimum.Comment: 10 pages, 13 figures, 2 tables. To be published in J. Chem. Phy
Depth dependent dynamics in the hydration shell of a protein
We study the dynamics of hydration water/protein association in folded
proteins, using lysozyme and myoglobin as examples. Extensive molecular
dynamics simulations are performed to identify underlying mechanisms of the
dynamical transition that corresponds to the onset of amplified atomic
fluctuations in proteins. The number of water molecules within a cutoff
distance of each residue scales linearly with protein depth index and is not
affected by the local dynamics of the backbone. Keeping track of the water
molecules within the cutoff sphere, we observe an effective residence time,
scaling inversely with depth index at physiological temperatures while the
diffusive escape is highly reduced below the transition. A depth independent
orientational memory loss is obtained for the average dipole vector of the
water molecules within the sphere when the protein is functional. While below
the transition temperature, the solvent is in a glassy state, acting as a solid
crust around the protein, inhibiting any large scale conformational
fluctuations. At the transition, most of the hydration shell unfreezes and
water molecules collectively make the protein more flexible.Comment: Journal of Chemical Physics in pres
Mine Fire Detection in the Presence Of Diesel Emissions
A series of four coal combustion experiments was conducted at the National Institute for Occupational Safety and Health\u27s (NIOSH) Pittsburgh Research Laboratory (PRL) in the Safety Research Coal Mine (SRCM) to evaluate the response of fire sensors to a small 0.61 m square smoldering coal fire which transitions to flaming combustion in the presence of diesel emissions. An optical path smoke sensor alarmed earlier than a point type diffusion mode ionization smoke sensor, which alarmed prior to a co alert value of 5 PPM above ambient. The presence of steady state diesel emissions resulted in a decrease in the optical smoke sensor analog output voltage signal by less than 1.4 pet for the three coal fire experiments in which a diesel engine was operating, whereas the ionization smoke sensor output decreased between 10.8 and 26.7 pet after the initial surge of the diesel engine. A commercial diesel discriminating fire sensor did not alarm for a fire in the one experiment for which it was used. The results of the experiments demonstrated that an optical path smoke sensor might be used to detect a coal fire under the experimental conditions considered of starting a diesel engine followed by a slowly developing coal fire
A statistical method for revealing form-function relations in biological networks
Over the past decade, a number of researchers in systems biology have sought
to relate the function of biological systems to their network-level
descriptions -- lists of the most important players and the pairwise
interactions between them. Both for large networks (in which statistical
analysis is often framed in terms of the abundance of repeated small subgraphs)
and for small networks which can be analyzed in greater detail (or even
synthesized in vivo and subjected to experiment), revealing the relationship
between the topology of small subgraphs and their biological function has been
a central goal. We here seek to pose this revelation as a statistical task,
illustrated using a particular setup which has been constructed experimentally
and for which parameterized models of transcriptional regulation have been
studied extensively. The question "how does function follow form" is here
mathematized by identifying which topological attributes correlate with the
diverse possible information-processing tasks which a transcriptional
regulatory network can realize. The resulting method reveals one form-function
relationship which had earlier been predicted based on analytic results, and
reveals a second for which we can provide an analytic interpretation. Resulting
source code is distributed via http://formfunction.sourceforge.net.Comment: To appear in Proc. Natl. Acad. Sci. USA. 17 pages, 9 figures, 2
table
- …