304 research outputs found

    Association Between Age, Gender and Body Weight in Educational Institutions in Ota, Southwest Nigeria

    Get PDF
    Background and Objective: There is paucity of data on the association between body weight and age or gender in Nigeria. This study investigated the body weight distribution amongst sexes and different age groups in educational institutions in Ota, Southwest Nigeria. Materials and Methods: The participants, 1394 (609%; 785&) healthy persons, were randomly selected from four schools in Canaanland, Ota and divided into six age groups: 2-5, 6-12, 13-19, 20-39, 40-59 and 60-75 years. Body weight was categorized into normal weight, underweight, overweight and obesity using CDC age and sex-specific BMI cut-offs for 2-19 years and WHO cut-offs for 20 years and above. Strength of association was assessed by correlation and regression analyses. Results: Underweight was prevalent at early childhood (22.7%) whereas obesity was predominant at middle adulthood (26.4%). Correlation was strong (p<0.001) between age and the anthropometric parameters: Weight (0.696); height (0.317); BMI (0.612) and body weight category (0.200). Gender had significant correlation with weight (-0.314, p<0.001) and height (-0.056, p<0.005). Body weight correlated more with age compared to gender. Conclusion: Age and gender had significant influence on the body weights of the studied population and could be factored into the national scheme for health and nutritional improvement

    Bioactive Screening and In Vitro Antioxidant Assessment of Nauclea latifolia Leaf Decoction

    Get PDF
    The phytochemical constituents and antioxidant properties of Nauclea latifolia leaf decoction were investigated. Dried leaves were extracted in ethanol. Qualitative and quantitative phytochemical analysis was determined spectrometrically. The antioxidant activities were examined in vitro using 2,2-diphenyl-1-picrylhydrazyl radical, total antioxidant capacity and ferric reducing antioxidant power assays. Phytochemical screening confirmed the presence of flavonoids, alkaloids, anthocyanins, betacyanins, phenols, saponins, terpenoids, cardiac glycosides and quinones. The total lycopene, β-carotene, phenolics, flavonoid and alkaloid content were found to be 0.038 ± 0.01 mg CAE/g, 0.120 ± 0.04 mg CAE/g, 58.08 ± 0.58 mg GAE/g, 10.75 ± 0.17 mg RE/g and 0.32 ± 0.08% respectively. N. latifolia ethanol leaf extract demonstrated effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl with an IC50 of 2.58 ± 0.08 mg/mL compared to 0.86 ± 0.02 mg/mL and < 0.01 ± 0.01 mg/mL for butylated hydroxytoluene and ascorbic acid respectively. Total antioxidant capacity and ferric reducing antioxidant power of the extract were 73.81 ± 2.27 and 1314.45 ± 197.64 mg AAE/g respectively. Excellent positive correlations between the phenolic content and antioxidant activities of the extract were observed. The leaf of N. latifolia is of therapeutic value and may be exploited for its rich antioxidant component

    Dual-microcavity narrow-linewidth Brillouin laser

    Get PDF
    Ultralow-noise yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include lidar, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to 7.8×10^(−14)  1/√Hz at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our dual-microcavity laser by performing spectral linewidth measurements with hertz-level resolution

    Low-noise stimulated Brillouin lasing in a microrod resonator

    Get PDF
    We demonstrate a Brillouin microcavity laser based on a microrod resonator exhibiting a frequency noise of 140 HZ/√Hz at 10 Hz offset. The corresponding laser linewidth is measured to be below 400 Hz

    The Lantern Vol. 8, No. 3, May 1940

    Get PDF
    • Sonnet for These Days • Peace Be With You • Creative Citizenship • Tony Solves an Ichthyological Problem • Tippy Tin • A Surgeon Paints • Thoughts • Standing at Ease • Nature\u27s Mistake • Tomorrow • This is Enough • I Built a Shrine to Love • Integer • I Look for Herhttps://digitalcommons.ursinus.edu/lantern/1021/thumbnail.jp

    MCT8 expression in human fetal cerebral cortex is reduced in severe intrauterine growth restriction

    Get PDF
    The importance of the thyroid hormone (TH) transporter, monocarboxylate transporter 8 (MCT8), to human neurodevelopment is highlighted by findings of severe global neurological impairment in subjects with MCT8 (SLC16A2) mutations. Intrauterine growth restriction (IUGR), usually due to uteroplacental failure, is associated with milder neurodevelopmental deficits, which have been partly attributed to dysregulated TH action in utero secondary to reduced circulating fetal TH concentrations and decreased cerebral thyroid hormone receptor expression. We postulate that altered MCT8 expression is implicated in this pathophysiology; therefore, in this study, we sought to quantify changes in cortical MCT8 expression with IUGR. First, MCT8 immunohistochemistry was performed on occipital and parietal cerebral cortex sections obtained from appropriately grown for gestational age (AGA) human fetuses between 19 weeks of gestation and term. Secondly, MCT8 immunostaining in the occipital cortex of stillborn IUGR human fetuses at 24–28 weeks of gestation was objectively compared with that in the occipital cortex of gestationally matched AGA fetuses. Fetuses demonstrated widespread MCT8 expression in neurons within the cortical plate and subplate, in the ventricular and subventricular zones, in the epithelium of the choroid plexus and ependyma, and in microvessel wall. When complicated by IUGR, fetuses showed a significant fivefold reduction in the percentage area of cortical plate immunostained for MCT8 compared with AGA fetuses (P<0.05), but there was no significant difference in the proportion of subplate microvessels immunostained. Cortical MCT8 expression was negatively correlated with the severity of IUGR indicated by the brain:liver weight ratios (r(2)=0.28; P<0.05) at post-mortem. Our results support the hypothesis that a reduction in MCT8 expression in the IUGR fetal brain could further compromise TH-dependent brain development

    Pulmonary Disease and Age at Immigration among Hispanics. Results from the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Rationale: Asthma has been reported to be more prevalent among Hispanics of Puerto Rican heritage than among other Hispanics and among Hispanics born in the United States or who immigrated as children than among those who came as adults; however, direct comparisons across Hispanic groups are lacking

    The PTTG1-binding factor (PBF/PTTG1IP) regulates p53 activity in thyroid cells

    Get PDF
    The PTTG1-Binding Factor (PBF/PTTG1IP) has an emerging repertoire of roles, especially in thyroid biology, and functions as a proto-oncogene. High PBF expression is independently associated with poor prognosis and lower disease-specific survival in human thyroid cancer. However, the precise role of PBF in thyroid tumorigenesis is unclear. Here, we present extensive evidence demonstrating that PBF is a novel regulator of p53, a tumor suppressor protein with a key role in maintaining genetic stability, which is infrequently mutated in differentiated thyroid cancer. By coimmunoprecipitation and proximity ligation assays, we show that PBF binds specifically to p53 in thyroid cells, and significantly represses transactivation of responsive promoters. Further, we identify that PBF decreases p53 stability by enhancing ubiquitination, which appears dependent on the E3 ligase activity of Mdm2. Impaired p53 function was evident in a transgenic mouse model with thyroid-specific PBF over-expression (PBF-Tg), which had significantly increased genetic instability as indicated by FISSR-PCR analysis. Consistent with this, ~40% of all DNA repair genes examined were repressed in PBF-Tg primary cultures, including genes with critical roles in maintaining genomic integrity such as Mgmt, Rad51 and Xrcc3. Our data also revealed that PBF induction resulted in upregulation of the E2 enzyme Rad6 in murine thyrocytes, and was associated with Rad6 expression in human thyroid tumors. Overall, this work provides novel insights into the role of the proto-oncogene PBF as a negative regulator of p53 function in thyroid tumorigenesis, where PBF is generally over-expressed and p53 mutations are rare compared to other tumor types

    The role of thyroid hormone nuclear receptors in the heart: evidence from pharmacological approaches

    Get PDF
    This review evaluates the hypothesis that the cardiac effects of amiodarone can be explained—at least partly—by the induction of a local ‘hypothyroid-like condition’ in the heart. Evidence supporting the hypothesis comprises the observation that amiodarone exerts an inhibitory effect on the binding of T3 to thyroid hormone receptors (TR) alpha-1 and beta-1 in vitro, and on the expression of particular T3-dependent genes in vivo. In the heart, amiodarone decreases heart rate and alpha myosin heavy chain expression (mediated via TR alpha-1), and increases sarcoplasmic reticulum calcium-activated ATPase and beta myosin heavy chain expression (mediated via TR beta-1). Recent data show a significant similarity in expression profiles of 8,435 genes in the heart of hypothyroid and amiodarone-treated animals, although similarities do not always exist in transcripts of ion channel genes. Induction of a hypothyroid cardiac phenotype by amiodarone may be advantageous by decreasing energy demands and increasing energy availability
    corecore